Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 401 Accesses

Abstract

In the previous chapter, we described Classical Field Theory (CFT) and its application to the electromagnetic interaction: Classical ElectroDynamics (CED). This description was purely classical.

There are no real one-particle systems in nature, not even few-particle systems. The existence of virtual pairs and of pair fluctuations shows that the days of fixed particle numbers are over.

Victor Weisskopf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As imposed by the spin-statistics theorem.

  2. 2.

    Note that this quantization procedure can be complicated by the vector nature of the field. We meet this difficulty in the quantization of the spin-1 particles.

  3. 3.

    The consistency of quantum mechanics with special relativity indeed forces us to abandon the interpretation of the single-particle interpretation of the wave function (see Klein paradox and Schwinger effect in Chap. 1).

  4. 4.

    For an interacting system, it is not possible to enumerate the number of particles in a given state since quantum fluctuations may temporarily create additional virtual particles. From a mathematical point of view, the equation of motion of an interacting field will be non-linear. The simple plane-wave expansion (3.4a) used for non-interacting fields where the coefficients are interpreted as creation and annihilation operators will therefore no longer be possible which renders the following construction impossible.

  5. 5.

    We ignore here the issue of field renormalization for the sake of simplicity.

  6. 6.

    Note that this relation holds only if the interaction Lagrangian does not contain any derivative of the fields.

  7. 7.

    We will see that q is associated to the electric charge.

  8. 8.

    The obtained theory is called a gauge theory and \(A^{\mu }\)gauge field.

  9. 9.

    There are many other subtleties in the quantization of gauge fields which we will not detail here. The interested reader is referred to [1,2,3, 13, 15, 16].

  10. 10.

    A classical background field is incapable of forming loops.

  11. 11.

    The reader interested about the treatment of depletion is referred to [20, 21].

  12. 12.

    In addition to the classical fact that the momentum of the electron also returns to its initial value after leaving the pulse (See Chap. 2).

  13. 13.

    These rules apply to stable vacua, i.e. in the presence of fields with \(\zeta _1 = \zeta _2 = 0\) [Eq. (2.22)]. For Feynman rules in unstable vacuum, the reader is referred to [5].

  14. 14.

    These are electron-positron in QED.

References

  1. Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  2. Weinberg S (2005) The quantum theory of fields. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Schwartz M (2014) Quantum field theory and the standard model. Cambridge University Press, Cambridge

    Google Scholar 

  4. Ritus VI (1979) Quantum effects of the interaction of elementary particles with an intense electromagnetic field. Ph.D. thesis

    Google Scholar 

  5. Fradkin ES, Gitman DM, Shvartsman SM (1991) Quantum electrodynamics with unstable vacuum. Springer, Heidelberg

    Book  Google Scholar 

  6. Seipt D (2012) Strong-field QED processes in short laser pulses. Ph.D. thesis, Institut fšur Theoretische Physik Fachrichtung Physik Fakultšat Mathematik und Naturwissenschaften der Technischen Universitšat Dresden

    Google Scholar 

  7. Mackenroth KF (2012) Quantum radiation in ultra-intense laser pulses. Ph.D. thesis, Combined Faculties for the Natural Sciences and Mathematics of the Ruperto-Carola University of Heidelberg, Germany

    Google Scholar 

  8. Meuren S (2015) Nonlinear quantum electrodynamic and electroweak processes in strong laser fields. Ph.D. thesis, Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany

    Google Scholar 

  9. Torgrimsson G (2016) Pair production, vacuum birefringence and radiation reaction in strong field QED. Ph.D. thesis, Department of Physics, Chalmers University of Technology

    Google Scholar 

  10. Fock V (1932) Konfigurationsraum und zweite quantelung. Z Phys 75:622–647

    Article  ADS  Google Scholar 

  11. Heisenberg W (1943) Die beobachtbaren grossen in der theorie der elementarteilche. Zeitschrift für Physik 120(7)

    Google Scholar 

  12. Feynman RP (1949) Space-time approach to quantum electrodynamics. Phys Rev 76(6):769

    Article  ADS  MathSciNet  Google Scholar 

  13. Landau L, Lifshitz EM (2012) Quantum electrodynamcis. Ellipses

    Google Scholar 

  14. Dirac PAM (1928) The quantum theory of the electron. Proc Roy Soc Lond A 117(778):610–624

    Article  ADS  Google Scholar 

  15. Gupta SN (1950) Theory of longitudinal photons in quantum electrodynamics. Proc Phys Soc Sect A 63(7):681

    Article  ADS  MathSciNet  Google Scholar 

  16. Bleuler K (1950) Eine neue methode zur behandlung der longitudinalen und skalaren photonen. Helv Phys Acta 23(5):567–586

    MathSciNet  MATH  Google Scholar 

  17. Mitter H (1975) Quantum electrodynamics in laser fields. In: Acta physica Austriaca supplementum XIV, p 397

    Google Scholar 

  18. Baier VN, Katkov VM, Strakhovenko VM (1998) Electromagnetic processes at high energies in oriented single crystals

    Google Scholar 

  19. Di Piazza A, Müller C, Hatsagortsyan K, Keitel CH (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 84:1177

    Article  ADS  Google Scholar 

  20. Ilderton A, Seipt D (2018) Backreaction on background fields: a coherent state approach. Phys Rev D 97:016007

    Article  ADS  Google Scholar 

  21. Heinzl T, Ilderton A, Seipt D (2018) Mode truncations and scattering in strong fields. Phys Rev D 98:016002

    Article  ADS  MathSciNet  Google Scholar 

  22. Glauber RJ (1963) Coherent and incoherent states of the radiation field. Phys Rev 131(6):2766

    Article  ADS  MathSciNet  Google Scholar 

  23. Harvey C, Heinzl T, Ilderton A (2009) Signatures of high-intensity Compton scattering. Phys Rev A 79:063407

    Article  ADS  Google Scholar 

  24. Furry WH (1951) On bound states and scattering in positron theory. Phys Rev 81:115

    Article  ADS  MathSciNet  Google Scholar 

  25. Volkov DM (1935) über eine Klasse von Lösungen der Diracschen Gleichung. Z Phys 94:250

    Article  ADS  Google Scholar 

  26. Baier V, Katkov V (2005) Concept of formation length in radiation theory. Phys Rep 409(5):261–359

    Article  ADS  Google Scholar 

  27. Di Piazza A, Tamburini M, Meuren S, Keitel CH (2018) Implementing nonlinear Compton scattering beyond the local-constant-field approximation. Phys Rev A 98:012134

    Article  ADS  Google Scholar 

  28. Ilderton A, King B, Seipt D (2018) High-intensity QED beyond the locally constant field approximation. arXiv arXiv:1808.10339v1

  29. Di Piazza A, Tamburini M, Meuren S, Keitel CH (2019) Improved local-constant-field approximation for strong-field QED codes. arXiv arXiv:1811.05834v2

  30. Niel F, Riconda C, Amiranoff F, Duclous R, Grech M (2018) From quantum to classical modeling of radiation reaction: a focus on stochasticity effects. Phys Rev E 97:043209

    Article  ADS  Google Scholar 

  31. Meuren S, Di Piazza A (2011) Quantum electron self-interaction in a strong laser field. Phys Rev Lett 107:260401

    Article  ADS  Google Scholar 

  32. Meuren S, Keitel CH, Di Piazza A (2013) Polarization operator for plane-wave background fields. Phys Rev D 88:013007

    Article  ADS  Google Scholar 

  33. Seipt D, Kämpfer B (2012) Two-photon Compton process in pulsed intense laser fields. Phys Rev D 85:101701

    Article  ADS  Google Scholar 

  34. Mackenroth F, Di Piazza A (2013) Nonlinear double Compton scattering in the ultrarelativistic quantum regime. Phys Rev Lett 110:070402

    Article  ADS  Google Scholar 

  35. King B (2015) Double Compton scattering in a constant crossed field. Phys Rev A 91:033415

    Article  ADS  Google Scholar 

  36. Di Piazza A, Hatsagortsyan KZ, Keitel CH (2010) Quantum radiation reaction effects in multiphoton Compton scattering. Phys Rev Lett 105:220403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Niel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niel, F. (2021). Quantum Electrodynamics. In: Classical and Quantum Description of Plasma and Radiation in Strong Fields. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-73547-0_3

Download citation

Publish with us

Policies and ethics