Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 410 Accesses

Abstract

This first chapter focuses on classical electrodynamics (CED), that is, the classical and relativistic theory of charged particles\(^1\) and electromagnetic field interaction.(\(^1\) Throughout this chapter, we will in particular focus on the electron.)

The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth, space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.

Hermann Minkowski (Sep 21, 1908), to the 80th Assembly of German Natural Scientists and Physicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, we will in particular focus on the electron.

  2. 2.

    Throughout this work, we assume a flat Minkowski metric with signature \((+,-,-,-)\). Furthermore, greek indices take values \(\mu = 0,...,3\) while spatial indices are denoted by Latin letters \(i = 1,2,3\).

  3. 3.

    At the moment, a is just an indice.

  4. 4.

    More precisely, we consider the proper orthochronous Lorentz group \(SO^{+}(3,1)\).

  5. 5.

    Here the index a of Eq. (2.3) becomes a Minkowski index \(\nu \). Moreover, \(F_{i,a} = 0\) since all fields are scalar under translation.

  6. 6.

    See Sect. 2.5 for a discussion about the bare mass in CED.

  7. 7.

    The action indeed transforms as

    figure a

    under the gauge transformation \(A^{\mu } \rightarrow A^{\mu } + \partial ^{\mu } \epsilon (x)\).

  8. 8.

    Note that, contrarily to Noether’s theorem, there is no need for the classical equations of motion to be verified for this conservation law to hold.

  9. 9.

    See Sect. 2.5 for a discussion about the bare charge in CED.

  10. 10.

    This can also be seen by multiplying Eq. (2.30) by \(u_{\mu }\) and by antisymmetry of F.

  11. 11.

    These relations will be useful for the derivation of the regularized self-field in Sect. 2.5.

  12. 12.

    Which should be the case since the photon is massless.

  13. 13.

    While the theoretical calculations are done in natural units, we use SI units for all the numerical applications and physical pictures.

  14. 14.

    And was reproduced here based on [18].

  15. 15.

    The theta functions, apparently noninvariant are actually Lorentz invariant when constrained by the delta functions.

  16. 16.

    See [19] of their interpretation.

  17. 17.

    and where the factor 2 comes from the fact that negative frequencies are unphysical.

  18. 18.

    i.e. we take in the preceding equations \(q = -e\).

  19. 19.

    We don’t consider here pure longitudinal accelerations.

  20. 20.

    Note that this factor is already present in the expression of Lineard-Wiechert potentials (2.56).

  21. 21.

    There is therefore no charge renormalization in CED, contrarily to QED.

  22. 22.

    Only two iterations are needed.

References

  1. Jackson JD (1999) Classical Electrodynamics, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  2. Landau LD, Lifshitz EM (1947) The Classical Theory of Fields. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  3. Rohrlich F (1964) Classical Charged Particles. World Scientific Publishing Co. Inc.

    Google Scholar 

  4. Landau LD, Lifshitz EM (1960) Mechanics, vol 1. Pergamon Press, Oxford

    MATH  Google Scholar 

  5. Lagrange J-L (1811) Mécanique analytique. Courcier

    Google Scholar 

  6. Noether E (1918) Invariante variationsprobleme. Math Phys Klasse 1918:235–257

    MATH  Google Scholar 

  7. Maggiore M (2005) A Modern Introduction to Quantum Field Theory. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Soper DE (1976) Classical Field Theory. Dover Books on Physics. Dover Publications

    Google Scholar 

  9. Bañados M, Reyes I (2016) A short review on Noether’s theorems, gauge symmetries and boundary terms. Int J Mod Phys D 25(10):1630021

    Article  ADS  MathSciNet  Google Scholar 

  10. Poincaré H (1906) Sur la dynamique de l’électron. Rendiconti del Circolo matematico di Palermo 21:129–176

    Article  Google Scholar 

  11. Peskin ME, Schroeder DV (1995) An Introduction to Quantum Field Theory. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  12. Schwartz M (2014) Quantum Field Theory and the Standard Model. Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge

    Google Scholar 

  13. Zee A (2016) Group Theory in a Nutshell for Physicists. Princeton University Press, Princeton

    MATH  Google Scholar 

  14. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philos Trans R Soc B 155:459–512

    Article  ADS  Google Scholar 

  15. Belinfante FJ (1940) On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7:449

    Article  ADS  MathSciNet  Google Scholar 

  16. Rosenfeld L (1940) Sur le tenseur d’impulsion-energie. Acad. Roy. Belg. Memoirs de classes de Science 18

    Google Scholar 

  17. Rougé A (2001) Introduction à la relativité. Ecole Polytechnique

    Google Scholar 

  18. Purcell E (2011) Electricity and Magnetism. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Coleman S (1961) Classical electron theory from a modern standpoint. RAND Memorandum RM-2820-PR

    Google Scholar 

  20. Sarachik ES, Schappert GT (1970) Classical theory of the scattering of intense laser radiation by free electrons. Phys Rev D 1:2738

    Article  ADS  Google Scholar 

  21. Meyer JW (1971) Covariant classical motion of electron in a laser beam. Phys Rev D 3:621

    Article  ADS  Google Scholar 

  22. Esarey E (1993) Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys Rev E 48:3003

    Article  ADS  Google Scholar 

  23. Salamin Y (1998) Generation of Compton harmonics by scattering linearly polarized light of arbitrary intensity from free electrons of arbitrary initial velocity. J Phys A Math Gen 31(4):1319

    Article  ADS  Google Scholar 

  24. Schwinger J (1949) On the classical radiation of accelerated electrons. Phys Rev 75:1912

    Article  ADS  MathSciNet  Google Scholar 

  25. Piazza D, Müller C, Hatsagortsyan K, Keitel CH (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 84:1177

    Article  ADS  Google Scholar 

  26. Dirac PAM (1938) Classical theory of radiating electrons. Proc R Soc Lond A 167:148–169

    Article  ADS  Google Scholar 

  27. Nakhleh CW (2013) The Lorentz-Dirac and Landau-Lifshitz equations from the perspective of modern renormalization theory. Am J Phys 81:180

    Article  ADS  Google Scholar 

  28. Weinberg S (2005) The Quantum Theory of Fields. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Bhabha HJ (1946) On the expansibility of solutions in powers of the interaction constants. Phys Rev 70(9–10):759

    Article  ADS  Google Scholar 

  30. Spohn H (2000) The critical manifold of the Lorentz-Dirac equation. EPL (Europhys Lett) 50(3):287

    Article  ADS  Google Scholar 

  31. Di Piazza A (2008) Exact solution of the Landau-Lifshitz equation in a plane wave. arXiv

    Google Scholar 

  32. Shen CS (1970) Synchrotron emission at strong radiative damping. Phys Rev Lett 24(8):410

    Article  ADS  Google Scholar 

  33. Koga J, Esirkepov TZ, Bulanov SV (2005) Nonlinear Thomson scattering in the strong radiation damping regime. Phys Plasmas 12:093106

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Niel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niel, F. (2021). Classical Electrodynamics. In: Classical and Quantum Description of Plasma and Radiation in Strong Fields. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-73547-0_2

Download citation

Publish with us

Policies and ethics