Skip to main content

Smart Magnetorheological (MR) Finishing Technology and Its Applications

  • Conference paper
  • First Online:
Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

  • 943 Accesses

Abstract

Magnetorheological (MR) finishing technology utilise the novel behaviour of magnetorheological finishing fluid (MRFF) which changes its rheological properties under the influence of magnetic field. Generally surface roughness is a main predictor of engineering, medical, automobile parts performance, as irregularities tend to form nucleation sites which leads to  wear, corrosion and thus, decreasing the efficiency of the components. In this  chapter, we emphasis on the use of MR finishing technology and its application in finishing of various types of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J.H., Pei, Z.J., Fisher, G.R.: Grinding wheels for manufacturing of silicon wafers: a literature review. Int. J. Mach. Tools Manuf 47, 1–13 (2007)

    Article  Google Scholar 

  2. Fleischer, J., Masuzawa, T., Schmidt, J., Knoll, M.: New applications for micro-EDM. J. Mater. Process. Technol. 149, 246–249 (2004)

    Article  Google Scholar 

  3. Abbas, N.M., Solomon, D.G., Bahari M.F. (eds.): A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 47, 1214–1228 (2007)

    Google Scholar 

  4. Mitsuishi, K., Shimojo, M., Tanaka, M., Furuya, K.: Nano-fabrication using electron-beam-induced deposition combined with low energy ion milling. Nuclear Instru. Methods Phys. Res. B 242, 244–246 (2006)

    Article  Google Scholar 

  5. Shinmura, T., Takazawa, K., Hatano, E., et al.: Study on magnetic abrasive finishing. CIRP Ann. Manuf. Technol. 39(1), 325–328 (1990)

    Article  Google Scholar 

  6. Kordonski, W.I., Shorey, A.B., Tricard, M.: Magnetorheological jet (MR JetTM) finishing technology. Trans. ASME J. Fluids Eng. 128, 20–26 (2006)

    Article  Google Scholar 

  7. Das, M., Jain, V.K., Ghoshdastidar, P.S.: Analysis of magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Techno 38(5), 613–621 (2008)

    Article  Google Scholar 

  8. Das, M., Jain, V.K., Ghoshdastidar, P.S.: Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int. J. Adv. Manuf. Technol. 62, 405–420 (2011)

    Article  Google Scholar 

  9. Niranjan, M., Jha, S., Kotnala, R.K.: Mechanism of material removal in ball end magnetorheological finishing process. Wear 302(1–2), 1180–1191 (2013)

    Google Scholar 

  10. Golini, D., Kordonski, W.I., Dumas, P., et al.: Magnetorheological finishing (MRF) in commercial precision optics manufacturing. Proc. SPIE 3782, 80–91 (1999)

    Article  Google Scholar 

  11. https://en.wikipedia.org/wiki/Bingham_plastic

  12. https://en.wikipedia.org/wiki/Newtonian_fluid

  13. Lloyd, J., Hayesmichel, M., Radcliffe, C.: Internal organizational measurement for control of magnetorheological fluid properties. J. Fluids Eng.-Trans. ASME 129, 423–428 (2007)

    Article  Google Scholar 

  14. Phule, P.: Synthesis of level magnetorheological fluids. MRS Bull. 23, 23–25 (1998)

    Article  Google Scholar 

  15. Sheikholeslami, M.: Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J. Mol. Liq. 263, 472–488 (2018)

    Article  Google Scholar 

  16. Sheikholeslami, M., Jafaryar, M., Li, Z.: Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J. Mol. Liq. 263, 472–488 (2018)

    Article  Google Scholar 

  17. Sheikholeslami, M.: Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J. Mol. Liq. 266, 495–503 (2018)

    Article  Google Scholar 

  18. Sheikholeslami, M., Gerdroodbary, M., Moradi, R., Shafee, A., Li, Z.: Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a chan27nel. Comput. Methods Appl. Mech. Eng. 344, 1–12 (2019)

    Article  Google Scholar 

  19. Sheikholeslami, M., Haq, R., Shafee, A., Li, Z.: Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transf. 130, 1322–1342 (2019)

    Article  Google Scholar 

  20. Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019)

    Article  MathSciNet  Google Scholar 

  21. Sheikholeslami, M.: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)

    Article  MathSciNet  Google Scholar 

  22. Sheikholeslami, M., Mahian, O.: Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J. Cleaner Prod. 215, 963–977 (2019)

    Google Scholar 

  23. Tong, Y., Dong, X., Qi, M.: High performance magnetorheological fluids with flower-like cobalt particles. Smart Mater. Struct. 26, 025023 (2017)

    Article  Google Scholar 

  24. Fang, F., Choi, H., Seo, Y.: Sequential coating of magnetic carbonyl iron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl. Mater. Interfaces. 2, 54–60 (2010)

    Article  Google Scholar 

  25. Kuzhir, P., Magnet, C., Bossis, G., Meunier, A., Bashtovoi, V.: Rotational diffusion may govern the rheology of magnetic suspensions. J. Rheol. 55, 1297–1318 (2011)

    Article  Google Scholar 

  26. Wang, J., Chen, W., Han, F.: Study on the magnetorheological finishing method for the WEDMed pierced die cavity. Int J Adv Manuf Technol 76, 1969–1975 (2015)

    Article  Google Scholar 

  27. Shinmura, T., Aizawa, T.: Study on internal finishing of a non-ferromagnetic tubing by magnetic abrasive machining process. Bull. Japan Soc. Precision Eng. 23(1), 37–41 (1989)

    Google Scholar 

  28. Tsegaw, A.A., Shiou, F.J., Lin, S.P.: Ultra-precision polishing of N-Bk7 using an innovative self-propelled abrasive fluid multi-jet polishing tool. J. Mech. Sci. Technol. 19, 262–285 (2015). https://doi.org/10.1080/10910344.2015.1018532

    Article  Google Scholar 

  29. Lee, S.H., Lu, Z., Babu, S.V., Matijevic, E.: Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria. J. Mater. Res. 17, 2744–2749 (2011). https://doi.org/10.1557/JMR.2002.0396

    Article  Google Scholar 

  30. Kordonski, W.I., Jacobs, S.D.: Magnetorheological finishing. Int. J. Mod. Phys. B 10, 2837–2848 (1996). https://doi.org/10.1142/S0217979296001288

    Article  Google Scholar 

  31. Singh, A.K., Jha, S., Pandey, P.M.: Nanofinishing of fused silicaglass using ball-end magnetorheological finishing tool. Mater. Manuf. Processes 27, 1139–1144 (2012). https://doi.org/10.1080/10426914.2011.654159

    Article  Google Scholar 

  32. Sidpara, A., Das, M., Jain, V.K.: Rheological characterization of magnetorheological finishing fluid. Mater. Manuf. Processes 24, 1467–1478 (2009). https://doi.org/10.1080/10426910903367410

    Article  Google Scholar 

  33. Cook, L.M.: Chemical processes in glass polishing. J. Non-Cryst. Solids 120, 152–171 (1990). https://doi.org/10.1016/0022-3093(90)90200-6

    Article  Google Scholar 

  34. Das, C.R.: The reaction between borate glass and attacking agents-part iii: equilibrium pH of the Alkali borate glasses and their relationship with chemical durability and the glass composition. Trans. Indian Ceram. Soc. 26, 155–158 (2014). https://doi.org/10.1080/0371750x.1967.10855602

    Article  Google Scholar 

  35. Hoshino, T., Kurata, Y., Terasaki, Y., Susa, K.: Mechanism of polishing of SiO2 Films by CeO2 particles. J. Non-Cryst. Solids 283, 129–136 (2001). https://doi.org/10.1016/s0022-3093(01)00364-7

    Article  Google Scholar 

  36. DeGroote, J.E., Marino, A.E., Wilson, J.P., Bishop, A.L., Lambropoulos, J.C., Jacobs, S.D.: Removal rate model for magnetorheological finishing of glass. Appl. Opt. 46, 7927–7941 (2007)

    Article  Google Scholar 

  37. Yamaguchi, H., Srivastava, A.K., Tan, M., Hashimoto, F.: Magnetic Abrasive Finishing of cutting tools for high-speed machining of titanium alloys. CIRP J. Manuf. Sci. Technol. 7, 299–304 (2014)

    Google Scholar 

  38. Niranjan, M.S., Jha, S.: Experimental investigation into tool aging effect in ball end magnetorheological finishing. Int. J. Adv. Manuf. Technol. 80, 1895–1902 (2015)

    Article  Google Scholar 

  39. Chen, S., Li, S., Hu, H., et al.: Analysis of surface quality and processing optimization of magnetorheological polishing of KDP crystal. J. Opt. 44(4), 384–390 (2015)

    Article  Google Scholar 

  40. Das, M., Jain, V.K., Ghoshdastidar, P.S.: A 2D CFD simulation of MR polishing medium in magnetic field-assisted finishing process using electromagnet. Int. J. Adv. Manuf. Technol. 76, 173–187 (2015)

    Article  Google Scholar 

  41. Ji, F., Xu, M., Wang, C. et al.: The magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystal with Fe3O4 nanoparticles. Nanoscale Res. Lett. 11(79) (2016). https://doi.org/10.1186/s11671-016-1301-4

  42. Liu, H., Chen, M., Yu, B., Fang, Z.: Configuration design and accuracy analysis of a novel magnetorheological finishing machine tool for concave surfaces with small radius of curvature. J. Mech. Sci. Technol. 30(7), 3301–3311 (2016)

    Article  Google Scholar 

  43. Kim, W.-B., Nam, E., Min, B.-K., et al.: Material removal of glass by magnetorheological fluid jet. Int. J. Precis. Eng. Man. 16(4), 629–637 (2016)

    Article  Google Scholar 

  44. Jung, B., Jang, K.I., Min, B.K., Lee, S.J., Seok, J.: Magnetorheological finishing process for hard materials using sintered iron-CNT compound abrasives. Int. J. Mach. Tools Manuf 49(5), 407–418 (2009). https://doi.org/10.1016/j.ijmachtools.2008.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaishya, R., Sharma, V., Kumar, V., Verma, R. (2022). Smart Magnetorheological (MR) Finishing Technology and Its Applications. In: Pratap Singh, R., Tyagi, D.M., Panchal, D., Davim, J.P. (eds) Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020). Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-73495-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73495-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73494-7

  • Online ISBN: 978-3-030-73495-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics