Skip to main content

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

The very first application in the Additive Manufacturing (AM) is the development of prototypes, that too by using plastic in fused deposition modeling (FDM) 3D printing processes, Stereolithography, SLS and others. Apart from printing ordinary shaped objects, Additive Manufacturing is also able to produce composites by using different materials on a single production platform. Continuous research and development has improved Additive manufacturing capability to develop various composite materials including fiber-reinforced composite, Biocomposite, Nanocomposites, Polymer matrix composites and Polymers. The primary purpose of this work is the literature-based study on FDM printed composite materials. For this purpose, the keyword “FDM Composites” is used in SCOPUS search and research papers from reputed publishers and Journals were identified and studied. Further, discussed the methods for the development of composite using FDM, and different composite materials with their types which can be printed by using FDM are discussed in a tabular form. It is learned that FDM provides an extraordinary chance to develop typical AM parts with the use of composite materials. Exploration, expansion and commercialization of AM materials are a significant extent of the study in the field of a composite at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua, K., Leong, F., Lim, S.: Rapid Prototyping: Principles and Applications 2nd edn. World Scientific (2003)

    Google Scholar 

  2. Upcraft, S., Fletcher, R.: The rapid prototyping technologies. Assembly Autom. 23, 318–330 (2003)

    Article  Google Scholar 

  3. Williams, M., Adewunmi, A., Schek, M., Flanagan, L., Krebsbach, H.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005)

    Article  Google Scholar 

  4. Li, X., Wang, T., Zhang, G., Li, C.: Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater. Lett. 63, 403–405 (2009)

    Article  Google Scholar 

  5. Zhang, X., Jiang, N., Sun, C.: Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuat. 77, 149–156 (1999)

    Article  Google Scholar 

  6. Zein, I., Hutmacher, W., Tan, C., Teoh, H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)

    Article  Google Scholar 

  7. Jones, R., Haufe, P., Sells, E., Iravani, P., Oliver, V.: RepRap—the replicating rapid prototype. Robotica 29, 177–191 (2011)

    Article  Google Scholar 

  8. Harun, W., Sharif, S., Idris, H., Kadirgama, K.: Characteristic studies of collapsibility of ABS patterns produced from FDM for investment casting. Mater. Res. Innov. 13(3), 340–343 (2009)

    Google Scholar 

  9. Plymill, A., Minneci, R., Greeley, A., Gritton, J.: Graphene and carbon nano-tube PLA composite feedstock development for fused deposition modeling. University of Tennessee Honors Thesis Projects (2016)

    Google Scholar 

  10. Masood, H., Song, Q.: Development of new metal/ polymer materials for rapid tooling using fused deposition modeling. Mater. Des. 25, 587–594 (2004)

    Article  Google Scholar 

  11. Kruth, P.: Material increase manufacturing by rapid prototyping techniques. CIRP Ann. Manuf. Technol. 40, 603–614 (1991)

    Google Scholar 

  12. Kruth, P., Leu, C., Nakagawa, T.: Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47, 525–540 (1998)

    Google Scholar 

  13. Horn, J., Harrysson, L.: Overview of current additive manufacturing technologies and selected applications. Sci. Prog. 95, 255–282 (2012)

    Article  Google Scholar 

  14. Guo, N., Leu, C.: Additive manufacturing: technology, applications and research needs. Front. Mechan. Eng. 8, 215–243 (2013)

    Article  Google Scholar 

  15. Mellor, S., Hao, L., Zhang, D.: Additive manufacturing: a framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)

    Article  Google Scholar 

  16. Yakout, M., Elbestawi, M.: Additive manufacturing of composite materials: an overview. In: 6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, May 29th–June 2nd (2017)

    Google Scholar 

  17. Lipson, H., Kurman, M.: Fabricated: The New World of 3D Printing. Wiley, Indianapolis (2013)

    Google Scholar 

  18. Dudek, P.: FDM 3D printing technology in manufacturing composite elements. Arch. Metall. Mater. 58(4), 1415–1418 (2013)

    Article  Google Scholar 

  19. Katarzyna, B., Elżbieta, P., Paweł, S., Wojciech, Ś., Marek, P.: Polymer Composite Manufacturing by FDM 3D Printing Technology. MATEC Web of Conferences 237. https://doi.org/10.1051/matecconf/201823702006

  20. Ning, W., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 80, 369–378 (2015)

    Article  Google Scholar 

  21. Kumar, S., Kruth, P.: Composites by rapid prototyping technology. Mater. Des. 31, 850–856 (2010)

    Article  Google Scholar 

  22. Pertuz, A.D. et.al.: Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique. Int. J. Fatig. 130, 105275 (2020)

    Google Scholar 

  23. Caminero, A., Chac, J., Moreno, I., Rodriguez, G.: Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 148, 93–103 (2018)

    Article  Google Scholar 

  24. Hao, W., Liu, Y., Zhou, H., Chen, H., Fang, D.: Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym. Test. 65, 29–34 (2018)

    Article  Google Scholar 

  25. Tian, X., Liu, T., Yang, C., Wang, Q., Li, D.: Interface and performance of 3D printed continuous carbon fibre reinforced PLA composites. Compos. Part A: Appl. Sci. Manuf. 88, 198–205 (2016)

    Google Scholar 

  26. Hofstätter, T., Gutmann, I., Koch, T., David, B.: Distribution and orientation of carbon fibres in polylactic acid parts produced by fused deposition modeling. In: Proceedings of ASPE summer topical meeting 2016: dimensional accuracy and surface finish in additive manufacturing. APSE—The American Society for Precision Engineering

    Google Scholar 

  27. Ochi, S.: Flexural properties of long bamboo fibre/PLA composites. Open J. Compos. Mater. 5, 70–78 (2015). https://doi.org/10.4236/ojcm.2015.53010

    Article  Google Scholar 

  28. Macha, J., Medard, M., Josephat, L.: In vitro study and characterization of cotton fabric PLA composite as a slow antibiotic delivery device for biomedical applications. J. Drug Deliv. Sci. Technol. 43, 172–177 (2018)

    Article  Google Scholar 

  29. Yusef, M., Khalid., M., Yasin, M.: Physico-mechanical properties of poly(lactic acid) biocomposites reinforced with cow dung. Mater. Res. Exp. 4(2) (2017). https://doi.org/10.1088/2053-1591/aa5cdb

  30. Duigou, A.L., Castro, M., Bevan, R., Martin, N.: 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater. Des. 96, 110–114 (2016)

    Article  Google Scholar 

  31. Kuo, C., Liu, C., Teng, W., Chang, H.: Preparation of starch/Acrylonitrile-Butadiene-Styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos. B Eng. 86, 36–39 (2016)

    Article  Google Scholar 

  32. Sabino, M., Fermín, Z., Marielys, L., Moret, J.: In vitro biocompatibility study of biodegradable polyester scaffolds constructed using fused deposition modeling. In: The International Federation of Automatic Control, Fortaleza, Brazil (2013)

    Google Scholar 

  33. Drummer, D., Cuellar, S.C., Rietzel, D.: Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp. J. 18(6), 500–507 (2012). https://doi.org/10.1108/13552541211272045

    Article  Google Scholar 

  34. Dul, S., Fambri, L., Pegoretti, A.: Filaments production and fused deposition modelling of ABS/carbon nanotubes composites. Nanomaterials 8, 49 (2018). https://doi.org/10.3390/nano8010049

  35. Dul, S., Fambri, L., Pegoretti, A.: Fused deposition modelling with ABS-graphene nanocomposites. Compos. Part A: Appl. Sci. Manuf. 85, 181–191 (2016)

    Google Scholar 

  36. Francis, V., Jain, P.K.: Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virt. Phys. Prototyp. 11(2), 109–121 (2016)

    Article  Google Scholar 

  37. Melenka, W., Cheung, K., Schofield, J., Dawson, M., Carey, J.: Evaluation and prediction of the tensile properties of continuous fibre-reinforced 3D printed structures. Compos. Struct. 153, 866–875 (2016)

    Article  Google Scholar 

  38. Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z., Sun, Z.: 3D printable graphene composite. Sci. Rep. 11181 (2015)

    Google Scholar 

  39. Singh, R., Singh, S., Fraternali, F.: Development of in-house composite wire-based feedstock filaments of fused deposition modelling for wear-resistant materials and structures. Compos. B Eng. 98, 244–249 (2016)

    Article  Google Scholar 

  40. Garg, H., Singh, R.: Investigations for melt flow index of Nylon6-Fe composite based hybrid FDM filament. Rapid Prototyp. J. 22(2), 338–343 (2016)

    Google Scholar 

  41. Nikzad, M., Masood, H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32(6), 3448–3456 (2011)

    Article  Google Scholar 

  42. Soundararajan, R., Jayasuriya, N., Vishnu, R., Prasad, B., Pradeep, C.: Appraisal of mechanical and tribological properties on PA6-TiO2 composites through fused deposition modelling. ICMPC-2019 Materials Today: Proceedings (2019). https://doi.org/10.1016/j.ijfatigue.2019.105275

  43. Masood, H., Song, Q.: Development of new metal/ polymer materials for rapid tooling using fused deposition modelling. Mater. Des. 25, 587–594 (2004)

    Google Scholar 

  44. Owolabi, G., Peterson, A., Habtour, E., Riddick, J., Coatney, M.: Dynamic response of Acrylonitrile butadiene styrene under impact loading. Int. J. Mechan. Mater. Eng. 11(1), 1–8 (2016)

    Google Scholar 

  45. Wu, W., Geng, P., Li, G.., Zhao, D., Zhang, H.: Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8(9), 5834–5846 (2015)

    Google Scholar 

  46. Cruz, P., Shoemake, E., Adam, P., Leachman, J.: Tensile strengths of polyamide-based 3D printed polymers in liquid nitrogen. IOP Publishing 102(1), 1–6 (2015)

    Google Scholar 

  47. Perez, T., Roberson, A., Wicker, R.: Fracture surface analysis of 3D-Printed tensile specimens of novel ABS-based materials. J. Fail. Anal. Prev. 14, 343–353 (2014)

    Article  Google Scholar 

  48. Lee, H., Abdullah, J., Khan, Z.: Optimization of rapid prototyping parameters for production of flexible ABS object. J. Mater. Process. Technol. 169, 54–61 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Shoeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shoeb, M., Kumar, L., Haleem, A., Javaid, M. (2022). Composites in Context to Additive Manufacturing. In: Pratap Singh, R., Tyagi, D.M., Panchal, D., Davim, J.P. (eds) Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020). Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-73495-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73495-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73494-7

  • Online ISBN: 978-3-030-73495-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics