Skip to main content

Organic Glass Scintillators

  • Chapter
  • First Online:
Plastic Scintillators

Part of the book series: Topics in Applied Physics ((TAP,volume 140))

Abstract

Organic Glass Scintillators (OGSs) have recently been reported as an exciting class of materials that exhibit noteworthy physical and scintillation characteristics. OGSs are based on a stable, amorphous, small-molecule host matrix that contains performance-enhancing additives such as wavelength shifters. This configuration provides a unique set of properties that combines attributes of single crystals, plastic scintillators, and liquid scintillators, respectively. Noteworthy OGS properties include scalable production via melt-casting, scintillation light yields and pulse-shape discrimination properties that are comparable to crystalline trans-stilbene, and isotropic optical and mechanical properties that are reminiscent of plastic scintillators. This chapter will describe OGS as a new class of organic scintillators and will review the molecular design considerations that can be utilized to meet the needs of existing and future radiation detection applications. These topics will be presented in the context of the energy transfer pathways and structure–property relationships discussed in detail in the preceding chapter (Chap. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.D. Ediger, J. Chem. Phys. 147(21), 210901 (2017)

    Article  ADS  Google Scholar 

  2. S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R.J. Mcmahon, M.D. Ediger, T. Wu, L. Yu, S. Satija, Science 315(5810), 353 (2007)

    Article  ADS  Google Scholar 

  3. I.M. Kalogeras, H.E.H. Lobland, J. Mater. Educ. 34, 69 (2012)

    Google Scholar 

  4. W. Klöpffer, M. Hepp, Monatsh. Chem. 125(1), 25 (1994)

    Article  Google Scholar 

  5. Y.-C. Mason Wu, M.F. Molaire, D.S. Weiss, F.A. Angel, C.R. DeBlase, B.P. Fors, J. Org. Chem. 80(24), 12740 (2015)

    Google Scholar 

  6. Q. Miao, X. Chi, S. Xiao, R. Zeis, M. Lefenfeld, T. Siegrist, M.L. Steigerwald, C. Nuckolls, J. Am. Chem. Soc. 128(4), 1340 (2006)

    Article  Google Scholar 

  7. I. Aujard, J.-P. Baltaze, J.-B. Baudin, E. Cogné, F. Ferrage, L. Jullien, É. Perez, V. Prévost, L.M. Qian, O. Ruel, J. Am. Chem. Soc. 123(34), 8177 (2001)

    Article  Google Scholar 

  8. S. Wang, W.J. Oldham, R.A. Hudack, G.C. Bazan, J. Am. Chem. Soc. 122(24), 5695 (2000)

    Article  Google Scholar 

  9. O. Lebel, T. Maris, M.-È. Perron, E. Demers, J.D. Wuest, J. Am. Chem. Soc. 128(32), 10372 (2006)

    Article  Google Scholar 

  10. M.F. Molaire, R.W. Johnson, J. Polym. Sci. Part A Polym. Chem. 27(8), 2569 (1989)

    Article  ADS  Google Scholar 

  11. D.M. Walters, L. Antony, J.J. de Pablod, M.D. Ediger, J. Phys. Chem. Lett. 8(14), 3380 (2017)

    Article  Google Scholar 

  12. J.S. Carlson, P. Marleau, R.A. Zarkesh, P.L. Feng, J. Am. Chem. Soc. 139(28), 9621 (2017)

    Article  Google Scholar 

  13. Y. Shirota, T. Kobata, N. Noma, Chem. Lett. 18(7), 1145 (1989)

    Article  Google Scholar 

  14. W. Ishikawa, H. Inada, H. Nakano, Y. Shirota, Chem. Lett. 20(10), 1731 (1991)

    Article  Google Scholar 

  15. H. Inada, Y. Shirota, J. Mater. Chem. 3(3), 319 (1993)

    Article  Google Scholar 

  16. A. Higuchi, H. Inada, T. Kobata, Y. Shirota, Adv. Mater. 3(11), 549 (1991)

    Article  Google Scholar 

  17. W. Ishikawa, H. Inada, H. Nakano, Y. Shirota, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 211(1), 431 (1992)

    Google Scholar 

  18. Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, Y. Shirota, Adv. Mater. 6(9), 677 (1994)

    Article  Google Scholar 

  19. H. Inada, K. Ohnishi, S. Nomura, A. Higuchi, H. Nakano, Y. Shirota, J. Mater. Chem. 4(2), 171 (1994)

    Article  Google Scholar 

  20. J.I. Sam, H. Kageyama, S. Nomura, H. Nakano, Y. Shirota, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 296(1), 445 (1997)

    Google Scholar 

  21. A. Higuchi, K. Ohnishi, S. Nomura, H. Inada, Y. Shirota, J. Mater. Chem. 2(10), 1109 (1992)

    Article  Google Scholar 

  22. H. Kageyama, K. Ohnishi, S. Nomura, Y. Shirota, Chem. Phys. Lett. 277(1–3), 137 (1997)

    Article  ADS  Google Scholar 

  23. T. Noda, I. Imae, N. Noma, Y. Shirota, Adv. Mater. 9(3), 239 (1997)

    Article  Google Scholar 

  24. T. Noda, H. Ogawa, N. Noma, Y. Shirota, Adv. Mater. 9(9), 720 (1997)

    Article  Google Scholar 

  25. T. Noda, Y. Shirota, J. Am. Chem. Soc. 120(37), 9714 (1998)

    Article  Google Scholar 

  26. T. Noda, H. Ogawa, N. Noma, Y. Shirota, J. Mater. Chem. 9(9), 2177 (1999)

    Article  Google Scholar 

  27. T. Ujike, K. Moriwaki, H. Nakano, Y. Shirota, J. Photopolym. Sci. Technol. 11(1), 33 (1998)

    Article  Google Scholar 

  28. Y. Shirota, K. Moriwaki, S. Yoshikawa, T. Ujike, H. Nakano, J. Mater. Chem. 8(12), 2579 (1998)

    Article  Google Scholar 

  29. D. Nagahama, T. Ujike, K. Moriwaki, S. Yoshikawa, H. Nakano, Y. Shirota, J. Photopolym. Sci. Technol. 12(2), 277 (1999)

    Article  Google Scholar 

  30. K. Nishimura, T. Kobata, H. Inada, Y. Shirota, J. Mater. Chem. 1(5), 897 (1991)

    Article  Google Scholar 

  31. M. Yoshiiwa, H. Kageyama, F. Wakaya, M. Takai, K. Gamo, Y. Shirota, J. Photopolym. Sci. Technol. 9(1), 57 (1996)

    Article  Google Scholar 

  32. M. Yoshiiwa, H. Kageyama, Y. Shirota, Appl. Phys. Lett. 69(17), 2605 (1996)

    Article  ADS  Google Scholar 

  33. T. Kadota, H. Kageyama, F. Wakaya, K. Gamo, Y. Shirota, J. Photopolym. Sci. Technol. 11(1), 147 (1998)

    Article  Google Scholar 

  34. T. Kadota, H. Kageyama, F. Wakaya, K. Gamo, Y. Shirota, J. Photopolym. Sci. Technol. 12(2), 375 (1999)

    Article  Google Scholar 

  35. Y. Shirota, J. Mater. Chem. 10(1), 1–25 (2000)

    Article  Google Scholar 

  36. T. Wang, V. Coropceanu, J.-L. Brédas, Chem. Mater. 31(16), 6239 (2019)

    Article  Google Scholar 

  37. M. Morisue, I. Ueno, T. Nakanishi, T. Matsui, S. Sasaki, M. Shimizu, J. Matsui, Y. Hasegawa, RSC Adv. 7(37), 22679 (2017)

    Article  ADS  Google Scholar 

  38. C. Beginn, J.V. Gražulevičius, P. Strohriegl, J. Simmerer, D. Haarer, Macromol. Chem. Phys. 195(7), 2353 (1994)

    Article  Google Scholar 

  39. K. Kunal, C.G. Roberton, S. Pawlus, S.F. Hahn, A.P. Sokolov, Macromolecules 41(19), 7232 (2008)

    Article  ADS  Google Scholar 

  40. A. Lim, G. Hernandez, J. Latta, H.A. Yemam, W. Senevirathna, U. Greife, A. Sellinger, A.C.S. Appl, Polym. Mater. 1(6), 1420 (2019)

    Google Scholar 

  41. W. Wei, P.I. Djurovich, M.E. Thompson, Chem. Mater. 22(5), 1724 (2010)

    Article  Google Scholar 

  42. X.-M. Liu, C. He, J. Huang, J. Xu, Chem. Mater. 17(2), 434–441 (2005)

    Article  Google Scholar 

  43. T. Proffen, S.J.L. Billinge, T. Egami, D.Z. Louca, Z. Kristallogr. 218(2), 132 (2003)

    Article  Google Scholar 

  44. M. Descamps, J.-F. Willart, in Disordered Pharmaceutical Materials, ed. by M. Descamps (Wiley-VCH, Weinheim, 2016), pp. 1–56

    Google Scholar 

  45. K. Ishii, H. Nakayama, Phys. Chem. Chem. Phys. 16(24), 12073 (2014)

    Article  Google Scholar 

  46. A. Plante, S. Palato, O. Lebel, A. Soldera, J. Mater. Chem. C 1(5), 1037 (2013)

    Article  Google Scholar 

  47. B. Atawa, N. Couvrat, G. Coquerel, E. Dargent, A. Saiter, Int. J. Pharm. 540(1–2), 11 (2018)

    Article  Google Scholar 

  48. K. Grzybowska, M. Paluch, P. Wlodarczyk, A. Grzybowski, K. Kaminski, L. Hawelek, D. Zakowiecki, A. Kasprzycka, I. Jankowska-Sumara, Mol. Pharmaceutics 9(4), 894 (2012)

    Article  Google Scholar 

  49. R. Katoh, K. Suzuki, A. Furube, M. Kotani, K. Tokumaru, J. Phys. Chem. C 113(7), 2961 (2009)

    Article  Google Scholar 

  50. S. Carlson, P.L. Feng, Nucl. Instr. Methods A 832, 152 (2016)

    Article  ADS  Google Scholar 

  51. R.C. Sangster, J.W. Irvine Jr., J. Chem. Phys. 24(4), 670 (1956)

    Article  ADS  Google Scholar 

  52. H. Shimura, Y. Ohba, Jpn. J. Appl. Phys. 20(9), 1683 (1981)

    Article  ADS  Google Scholar 

  53. R. Diana, U. Caruso, S. Piotto, S. Concilio, R. Shikler, B. Panunzi, Molecules 25(6), 1368 (2020)

    Article  Google Scholar 

  54. G.E. Johnson, T.A. Good, Macromolecules 15(2), 409 (1982)

    Article  ADS  Google Scholar 

  55. L.J. Basile, J. Chem. Phys. 36(8), 2204 (1962)

    Article  ADS  Google Scholar 

  56. E. Montbarbon, F. Sguerra, G.H.V. Bertrand, É. Magnier, R. Coulon, R.B. Pansu, M. Hamel, Chem. Eur. J. 22(34), 12074 (2016)

    Google Scholar 

  57. F.H. Quina, F.A. Carroll, J. Am. Chem. Soc. 98(1), 6 (1976)

    Article  Google Scholar 

  58. G. Goldstein, W.S. Lyon, Int. J. Appl. Rad. Isotop. 15, 133 (1964)

    Article  Google Scholar 

  59. J.B. Aladekomo, J.B. Birks, Proc. R. Soc. Lond. 284(1399), 551 (1965)

    ADS  Google Scholar 

  60. AAT Bioquest, https://www.aatbio.com/spectrum/1_methyl_naphthalene. Accessed 06 Dec 2020

  61. J.A.S.A. Olivera, Dissertation, Universidade do Porto, 2016

    Google Scholar 

  62. AAT Bioquest, https://www.aatbio.com/spectrum/monoisopropyl_biphenyl. Accessed 06 Dec 2020

  63. A.F.L.O.M. Santos, J.A.S.A. Oliveira, M.D.M.C. Ribeiro da Silva, M.J.S. Monte, Chemosphere 146, 173 (2016)

    Google Scholar 

  64. A. Reiser, L.J. Leyshon, J. Chem. Phys. 56(2), 1011 (1972)

    Article  ADS  Google Scholar 

  65. X. Zhang, Z. Chi, Z. Yang, M. Chen, B. Xu, L. Zhou, C. Wang, Y. Zhang, S. Liu, J. Xu, Opt. Mater. 32(1), 94 (2009)

    Article  ADS  Google Scholar 

  66. Y. Oyama, M. Mamada, A. Shukla, E.G. Moore, S.-C. Lo, E.B. Namdas, C. Adach, ACS Mater. Lett. 2(2), 161 (2020)

    Article  Google Scholar 

  67. F.D. Brooks, Nucl. Instr. Methods 162(1–3), 477 (1979)

    Article  Google Scholar 

  68. D. Hu, P. Lu, C. Wang, H. Liu, H. Wang, Z. Wang, T. Fei, X. Gua, Y. Ma, J. Mater. Chem. 19(34), 6143 (2009)

    Article  Google Scholar 

  69. Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 31(6R), 1812 (1992)

    Article  ADS  Google Scholar 

  70. J. Chen, Q. Hao, S. Wang, S. Li, T. Yu, Y. Zeng, J. Zhao, S. Yang, Y. Wu, C. Xue, G. Yang, Y. Li, A.C.S. Appl, Polym. Mater. 1(3), 526–534 (2019)

    Google Scholar 

  71. J. Salbeck, N. Yu, J. Bauer, F. Weissörtel, H. Bestgen, Synth. Met. 91(1–3), 209 (1997)

    Article  Google Scholar 

  72. L.C. Brown, A.J. Peloquin, N.P. Godman, G.J. Balaich, S.T. Iacono, J. Org. Chem. 85(17), 11116 (2020)

    Article  Google Scholar 

  73. J.W. Downs, F.L. Smith, Nucleonics 16, 94 (1958)

    Google Scholar 

  74. C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-M. Chen, Y.-Y. Chien, J. Am. Chem. Soc. 125(13), 3710 (2003)

    Article  Google Scholar 

  75. L.-Y. Chen, T.-H. Ke, C.-C. Wu, Appl. Phys. Lett. 91(16), 163509 (2007)

    Article  ADS  Google Scholar 

  76. C.-C. Wu, W.-G. Liu, W.-Y. Hung, T.-L. Liu, Y.-T. Lin, H.-W. Lin, Appl. Phys. Lett. 87(5), 052103 (2005)

    Article  ADS  Google Scholar 

  77. C.-I. Wu, G.-R. Lee, C.-T. Lin, Y.-H. Chen, Appl. Phys. Lett. 87(24), 242107 (2005)

    Article  ADS  Google Scholar 

  78. W.K. Warburton, J.S. Carlson, P.L. Feng, A new organic glass scintillator (OGS): property comparisons to stilbene, EJ276 and BC404. Oral presented IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester UK, 26 Oct.–2 Nov 2019

    Google Scholar 

  79. S.K. Lee, Y.H. Cho, B.H. Kang, W.G. Lee, J.K. Kim, G.D. Kim, N.Z. Galunov, Y.K. Kim, Prog. Nucl. Sci. Technol. 1, 292 (2011)

    Article  Google Scholar 

  80. Eljen Technology website, Plastic scintillators: pulse shape discrimination EJ-276 & EJ-276G. https://eljentechnology.com/products/plastic-scintillators/ej-276. Accessed 30 Sept 2020

  81. T.H. Shin, P.L. Feng, J.S. Carlson, S.D. Clarke, S.A. Pozzi, Nucl. Instr. Methods A 939, 36 (2019)

    Article  ADS  Google Scholar 

  82. T. Laplace, B. Goldblum, J. Manfredi, J. Brown, J. Carlson, P. Feng, E. Bourret-Courchesne, F. Moretti, J. Bevins, D. Bleuel, E. Callaghan, G. Gabella, K. Harrig, M. Shinner, C. Moore, A. Sweet, Z. Sweger, Comparative scintillation performance of EJ-276, EJ-309 and a novel organic glass. Poster presented IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester UK, 26 Oct.-2 Nov 2019

    Google Scholar 

  83. S. Usman, A. Patil, Nucl. Eng. Technol. 50(7), 1006 (2018)

    Article  Google Scholar 

  84. J.A. Brown, B.L. Goldblum, T.A. Laplace, K.P. Harrig, L.A. Bernstein, D.L. Bleuel, W. Younes, D. Reyna, E. Brubaker, P. Marleau, J. Appl. Phys. 124(4), 045101 (2018)

    Article  ADS  Google Scholar 

  85. J.S. Schweitzer, Nucl. Geophys. 5, 65 (1991)

    Google Scholar 

  86. E.R. Siciliano, J.H. Ely, R.T. Kouzes, B.D. Milbrath, J.E. Schweppe, D.C. Stromswold, Nucl. Instr. Methods A 550(3), 647 (2005)

    Article  ADS  Google Scholar 

  87. R.J. Cameron, B.G. Fritz, C. Hurlbut, R.T. Kouzes, A. Ramey, R. Smola, IEEE Trans. Nucl. Sci. 62(1), 368 (2015)

    Article  ADS  Google Scholar 

  88. P.B. Rose Jr., A. Okowita, M.J. Lance, E. Sword, IEEE Trans. Nucl. Sci. 67(7), 1765 (2020)

    Article  ADS  Google Scholar 

  89. M. Loyd, M. Pianassola, C. Hurlbut, K. Shipp, L. Sideropoulos, K. Weston, M. Koschan, C.L. Melcher, M. Zhuravleva, Nucl. Instr. Methods A 922, 202 (2019)

    Article  ADS  Google Scholar 

  90. N.R. Myllenbeck, S. Payne, P.L. Feng, Nucl. Instr. Methods A 954, 161782 (2020)

    Article  Google Scholar 

  91. C. Redding, A. Hackett, M. Laubach, R. Feng, P. Feng, C. Hurlbut, P. Liaw, J.P. Hayward, Nucl. Instr. Methods A 954, 161448 (2020)

    Article  Google Scholar 

  92. D.J. Luscher, F.L. Addessio, M.J. Cawkwell, K.J. Ramos, J. Mech. Phys. Solids 98, 63 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  93. K.M. Davoudi, J.J. Vlassak, J. Appl. Phys. 123(8), 085302 (2018)

    Article  ADS  Google Scholar 

  94. Ł Kapłon, A. Kochanowski, M. Molenda, P. Moskal, A. Wieczorek, T. Bednarski, P. Białas, E. Czerwiński, G. Korcyl, J. Kowal, P. Kowalski, T. Kozik, W. Krzemień, S. Niedźwiecki, M. Pałka, M. Pawlik, L. Raczyński, Z. Rudy, P. Salabura, N. Gupta-Sharma, M. Silarski, A. Słomski, J. Smyrski, A. Strzelecki, W. Wiślicki, M. Zieliński, N. Zoń, Bio-Algorithms Med-Syst. 10(1), 27 (2014)

    Article  Google Scholar 

  95. K. Ku, J.F. Joung, H. Park, M.-G. Kim, S. Park, W. Kim, Adv. Funct. Mater. 28(39), 1801394 (2018)

    Article  Google Scholar 

  96. B.C. Hancock, G. Zografi, J. Pharm. Sci. 86(1), 1 (1997)

    Article  Google Scholar 

  97. P.S. Bassi, N.K. Sharma, M.K. Sharma, Cryst. Res. Technol. 18(9), 1191 (1983)

    Article  Google Scholar 

  98. S. Mannepalli, K.S.R.N. Mangalampalli, Crystals 7(11), 324 (2017)

    Article  Google Scholar 

  99. P.L. Feng, M.E. Foster, IEEE Trans. Nucl. Sci. 60(4), 3142 (2013)

    Article  ADS  Google Scholar 

  100. Overview of materials for polystyrene, Extrusion Grade. https://www.matweb.com/search/DataSheet.aspx?MatGUID=1c41e50c2e324e00b0c4e419ca780304&ckck=1. Accessed 30 Sept 2020

  101. S. Emamian, T. Lu, H. Kruse, H. Emamian, J. Comput. Chem. 40(32), 2868 (2019)

    Article  Google Scholar 

  102. A. Laventure, A. Gujaral, O. Lebel, C. Pellerin, M.D. Ediger, J. Phys. Chem. B 121(10), 2350 (2017)

    Article  Google Scholar 

  103. U.S. Kestur, L.S. Taylor, CrystEngComm 12(8), 2390 (2010)

    Article  Google Scholar 

  104. J. Kang, N. Shin, D.Y. Jang, V.M. Prabhu, D.Y. Yoon, J. Am. Chem. Soc. 130(37), 12273 (2008)

    Article  Google Scholar 

  105. P.S.K. Amegadze, Y.-Y. Noh, Thin Solid Films 556, 414 (2014)

    Article  ADS  Google Scholar 

  106. C.T. Powell, Y. Chen, L. Yu, J. Non-Cryst, Solids 429, 122 (2015)

    Google Scholar 

  107. N. Zaitseva, B.L. Rupert, I. Pawełczak, A. Glenn, H.P. Martinez, L. Carman, M. Faust, N. Cherepy, S. Payne, Nucl. Instr. Methods A 668, 88 (2012)

    Article  ADS  Google Scholar 

  108. K.L. Ngai, S. Valenti, S. Capaccioli, J. Non-Cryst. Solids 119573 (2019)

    Google Scholar 

  109. B.L. Hammant, Composites 1(2), 150 (1969)

    Article  Google Scholar 

  110. C. Bhugra, M.J. Pikal, J. Pharm. Sci. 97(4), 1329 (2008)

    Article  Google Scholar 

  111. Y. Zhang, Z. Fakhraai, Proc. Natl. Acad. Sci. U. S. A. 114, 4915 (2017)

    Article  ADS  Google Scholar 

  112. Y. Zhang, Z. Fakhraai, Phys. Rev. Lett. 118(6), 066101 (2017)

    Article  ADS  Google Scholar 

  113. L. Yu, Adv. Drug Delivery Rev. 100, 3 (2016)

    Article  Google Scholar 

  114. D.N. Theodorou, U.W. Suter, Macromolecules 19(2), 379 (1986)

    Article  ADS  Google Scholar 

  115. T. Wu, Y. Sun, N. Li, M.M. de Villiers, L. Yu, Langmuir 23(9), 5148 (2007)

    Article  Google Scholar 

  116. Inrad Optics website, https://inradoptics.com/. Accessed 29 Sept 2020

  117. Y. Wei, B. Dattachowdhury, K.K. Vangara, N. Patel, K. Alexander, S.H.S. Boddu, in Excipient Applications in Formulation Design and Drug Delivery, ed. by A.S. Narang, S.H.S. Boddu (Springer, Cham, 2015), pp. 463–495

    Google Scholar 

  118. I.B. Berlman, J. Chem. Phys. 34(3), 1083 (1961)

    Article  ADS  Google Scholar 

  119. Z. Chang, N.C. Okoye, M.J. Urffer, A.D. Green, K.E. Childs, L.F. Miller, Nucl. Instr. Methods A 769, 112 (2015)

    Article  ADS  Google Scholar 

  120. A. Mahl, H.A. Yemam, R. Fernando, J.T. Koubek, A. Sellinger, U. Greife, Nucl. Instr. Methods A 880, 1 (2018)

    Article  ADS  Google Scholar 

  121. P.L. Feng, W. Mengesha, M.R. Anstey, J.G. Cordaro, IEEE Trans. Nucl. Sci. 63(1), 407 (2016)

    Article  ADS  Google Scholar 

  122. G.H.V. Bertrand, J. Dumazert, F. Sguerra, R. Coulon, G. Corre, M. Hamel, J. Mater. Chem. C 3, 6006 (2015)

    Article  Google Scholar 

  123. L.Q. Nguyen, G. Gabella, B.L. Goldblum, T.A. Laplace, J.S. Carlson, E. Brubaker, P.L. Feng, Nucl. Instr. Methods A, 164898 (2021). https://doi.org/10.1016/j.nima.2020.164898

  124. Y.K. Sun, H. Zhang, X.K. Zhao, M. Shao, Z.B. Tang, C. Li, Nucl. Instr. Methods A 940, 129 (2019)

    Article  ADS  Google Scholar 

  125. L. Swiderski, M. Moszynski, D. Wolski, T. Batsch, J. Iwanowska, A. Nassalski, A. Syntfeld-Kazuch, T. Szczesniak, F. Kniest, M.R. Kusner, G. Pausch, J. Stein, W. Klamra, P. Schotanus, C. Hurlbut, IEEE Trans. Nucl. Sci. 57(1), 375 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Defense Nuclear Nonproliferation, NA-22, NNSA, U.S. Department of Energy. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, P.L., Myllenbeck, N.R., Carlson, J.S. (2021). Organic Glass Scintillators. In: Hamel, M. (eds) Plastic Scintillators. Topics in Applied Physics, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-73488-6_8

Download citation

Publish with us

Policies and ethics