Skip to main content

Mental Workload Management and Evaluation: A Literature Review for Sustainable Processes and Organizations

  • Chapter
  • First Online:
New Perspectives on Applied Industrial Ergonomics

Abstract

Current organizational and manufacturing processes imply high mental workload demands that can be evaluated through the construct of MWL (mental workload). This term is often used in new manufacturing and organizational environments, which have replaced physical tasks with cognitive activities involving a high MWL. By overusing the attentional resources given to the tasks, such work environments are placing high cognitive loads on operators, thus affecting their performance and causing them to experience mental fatigue. A formal evaluation of MWL offers the opportunity to prevent mental disorders and maintain mental health. On the other hand, the lack of evaluation and proper management of MWL in the industry can result in errors that create economic costs, accidents, injuries, or even deadly events. Finally, MWL assessment and management can be a human-oriented strategy designed to improve and sustain the future of an organization. Industries must find competitive advantages in sustainable processes from the economic, environmental, and social view. In this sense, this chapter aims to present a literature review to provide a comprehensive literature analysis of MWL evaluation and management for sustainable processes in the manufacturing industry, from a social perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Babski-Reeves K, DuBien J, Webb H, Strawderman L (2016) Fatigue differences between Asian and Western populations in prolonged mentally demanding work tasks. Int J Ind Ergon 54:103–112

    Article  Google Scholar 

  • Alberdi A, Aztiria A, Basarab A (2016) Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J Biomed Inform 59:49–75

    Article  Google Scholar 

  • Allender L (2000). Modeling human performance: impacting system design, performance, and cost. In: Proceedings of the Military, Government and Aerospace Simulation Symposium, 2000 Advanced Simulation Technologies Conference. M. Chinni, Washington, DC, pp 139–144

    Google Scholar 

  • Anderson J, Matessa M. (1998) The rational analysis of categorization and the ACT-R architecture. In: Oaksford M, Chater N (eds), Rational models of cognition. Oxford University Press, pp 197–217

    Google Scholar 

  • Apud E (2012) Ergonomics in mining: the chilean experience. Hum Factors 54:901–907

    Article  Google Scholar 

  • Atalay KD, Can GF, Erdem SR, Muderrisoglu IH (2016) Assessment of mental workload and academic motivation in medical students. J Pak Med Assoc 66:574–578

    Google Scholar 

  • Balfe N, Sharples S, Wilson JR (2015) Impact of automation: Measurement of performance, workload, and behavior in a complex control environment. Appl Ergon 47:52–64

    Article  Google Scholar 

  • Banville H, Parent M, Tremblay S, Falk TH (2019) Toward mental workload measurement using multimodal EEG-fNIRS monitoring. Elsevier. In: Neuroergonomics: 245–246. http://dx.doi.org/10.1016/B978-0-12-811926-6.00057-9

  • Bernhardt KA, Poltavski D, Petros T, Ferraro FR, Jorgenson T, Carlson C, Drechesel P, Iseminger C (2019) The effects of dynamic workload and experience on commercially available EEG cognitive state metrics in a high-fidelity air traffic control environment. Appl Ergon 77:83–91

    Article  Google Scholar 

  • Biswas P, Prabhakar G (2018) Detecting drivers’ cognitive load from saccadic intrusion. Transp Res Part F 54:63–78

    Article  Google Scholar 

  • Boele-Vos MJ, Commandeur JF, Twisk DM (2017) Effect of physical effort on mental workload of cyclists in real traffic in relation to age and use of pedelecs. Accid Anal Prev 105:84–94

    Article  Google Scholar 

  • Bommer SC, Fendley M (2018) A theoretical framework for evaluating mental workload resources in human systems design for manufacturing operations. Int J Ind Ergon 63:7–17

    Article  Google Scholar 

  • Borghetti BJ, Giametta JJ, Rusnock CF (2017) Assessing continuous operator workload with a hybrid scaffolded neuroergonomic. Hum Factors 59:134–146

    Article  Google Scholar 

  • Boulhic L, Bignon A, Sillone F, Morineau T, Rechard J, Bouillon JF (2018) Effects of color codes used on marine supervision HMI on mental workload and information retrieval: experimentation with novices and experts. Int J Ind Ergon 67:180–191

    Article  Google Scholar 

  • Cai Z, Wu Q, Huang D, Ding L, Yu B, Law R, Huag J, Fu S (2016) Cognitive state recognition using wavelets singular entropy and ARMA entropy with AFPA optimized GP classification. Neurocomputing 197:29–44

    Article  Google Scholar 

  • Castle H, Leggatt H (2002) Instantaneous self-assessment (SA) validity & reliability. BAE Systems. Advanced Technology Centre, Internal Report, JS, 14865

    Google Scholar 

  • Causse M, Chua Z, Peysakhovich V, Del Campo N, Matton N (2017) Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Sci Reports 7:5222. https://doi.org/10.1038/s41598-017-05378-x

    Article  Google Scholar 

  • Causse M, Fabre E, Glraudet L, Gonzalez M, Peysakhovich V (2015) EEG/ERP as a measure of mental workload in a simple piloting task. Procedia Manufacturing 3/6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences 3:5230–5236

    Google Scholar 

  • Charbonnier S, Roy RN, Bonnet S, Campagne A (2016) EEG index for control operators’ mental fatigue monitoring using interactions between brain regions. Expert Syst Appl 52:91–98

    Article  Google Scholar 

  • Charles RL, Nixon J (2019) Measuring mental workload using physiological measures: a systematic review. Appl Ergon 74:221–232

    Article  Google Scholar 

  • Chen Y, Yan S, Tran CC (2019) Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload. Nucl Eng Technol 51:453–462

    Article  Google Scholar 

  • Chi CF, Cheng CC, Shih YC, Sun IS, Chang TC (2019) Learning rate and subjective mental workload in five truck driving tasks. Ergonomics. https://doi.org/10.1080/00140139.2018.1545054

    Article  Google Scholar 

  • Cinaz B, Arnrich B, La Marca R (2013) Monitoring of mental workload levels during an everyday life office-work scenario. Pers Ubiquit Comput 17:229–239

    Article  Google Scholar 

  • Claypoole VL, Dever DA, Denues KL, Szalma JL (2019) The effects of event rate on a cognitive vigilance task. Hum Factors 61:440–450

    Article  Google Scholar 

  • Cooper GE, Harper RP (1969) The use of pilot rating in the evaluation of aircraft handling qualities. Anes Research Center, Moffett field

    Google Scholar 

  • Cowan C, Girdner J, Majdoc B, Barrella E, Anderson R, Watson M (2018) Validating the use of B-Alert live electroencephalography in measuring cognitive load with the NASA task load index. ASEE southern section conference. American society for engineering education.

    Google Scholar 

  • Craig CM, Klein MI (2019) The abbreviated vigilance task and it’s attentional contributors. Hum Factors 61:426–439

    Article  Google Scholar 

  • Cruz Espinoza BS (2017) Model to determine the incidence of mental workload in the work performance of the workers of the CONALVISA company in the City of Riobamba, in 2016 [in Spanish]. Graduate studies Thesis. Riobamba, Ecuador: Chimborazo National University

    Google Scholar 

  • Cui X, Zhang J, Wang R (2016) Identification of mental workload using imbalanced EEG data and DySMOTE-based neural network approach. IFAC-PapersOnLine 49(19):567–572

    Article  Google Scholar 

  • Darvishi E, Melmanatabadi M (2015) The rate of subjective mental workload and its correlation with musculoskeletal disorders in bank staff in Kurdistan, Iran. Procedia Manufacturing 3:37–42

    Article  Google Scholar 

  • Di Flumeri G, Borghini G, Arico P, Sciaraffa N, Lanzi P, Pozzi S, Vignali V, Lantieri C, Bichicchi A, Simone, A, Babilon (2019) EEG-based mental workload assessment during real driving: a taxonomic tool for neuroergonomics in highly automated environments. Elsevier. In Neuroergonomics, pp 121–126. https://doi.org/10.1016/B978-0-12-811926-6.00020-8

  • Dudek B, Koniarek J (2015, January 8) The subjective rating scales for measurement of mental workload-thurstonian scaling. Retrieved from International Journal of Occupational Safety and Ergonomics. https://www.tandfonline.com/doi/abs/10.1080/10803548.1995.11076308

  • Duque Lopez V (2015) Las pausas activas como estrategia para el control de la fatiga. QUITO: UNIVERSIDAD CENTRAL DEL ECUADOR

    Google Scholar 

  • Eastwood Gruginski B, Amarai Gontijo L, Merino E (2015) Frequency of application of mental workload measuring instruments in recent publications in Brazil. Procedia Manuf 3:5134–5138

    Article  Google Scholar 

  • Estes S (2015) The workload curve: subjective mental workload. Hum Factors 57(7):1174–1187. https://doi.org/10.1177/0018720815592752

    Article  Google Scholar 

  • Fairclough S, Ewing K (2017) The effect of task demand and incentive on neurophysiological and cardiovascular markers of effort. Int J Psychophysiol 119:58–66

    Article  Google Scholar 

  • Fairclough, S, Ewing, K, Burns, C, Kreplin, U (2019) Neural efficiency and mental workload: locating the red line. Elsevier. In Neuroergonomics, pp 73–77. https://doi.org/10.1016/B978-0-12-811926-6.00012-9

  • Fallahi M, Motamedzade M, Heidarimoghadam R, Soltanian AR, Miyake S (2016) Effects of mental workload on physiological and subjective responses during traffic density monitoring: a field study. Appl Ergono 52:95–103

    Article  Google Scholar 

  • Fang W, Liu Y, Guo B, Zhang Y (2015) OCC Controller workload evaluation model and application. Procedia Manufacturing 3246–3253

    Google Scholar 

  • Faure V, Benguigui N (2016) The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior. Transp Res Part F: Traffic Psychol Behav 40:78–90

    Article  Google Scholar 

  • Fernandes A, Olivind Braarud P (2015) Exploring measures of workload, situation awareness, and task performance in the Main Control Room. Procedia Manuf 3:1281–1288

    Article  Google Scholar 

  • Finkbeiner KM, Russell PN, Helton WS (2016) Rest improves performance, nature improves happiness: assessment of break periods on the abbreviated vigilance task. Conscious Cogn 42:277–285

    Article  Google Scholar 

  • Foy HJ, Chapman P (2018) Mental workload is reflected in driver behavior, physiology, eye movements and prefrontal cortex activation. Appl Ergono 73:90–99

    Article  Google Scholar 

  • Galy E (2018) Consideration of several mental workload categories: perspectives for elaboration of new ergonomic recommendations concerning shiftwork. Theor Issues Ergon Sci 19(4):483–497

    Article  Google Scholar 

  • Galy E, Paxion J, Berthelon C (2018) Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving. Ergonomics 61(4):517–527

    Article  Google Scholar 

  • García-Mas A, Ortega E, Ponseti J, de Teresa C, Cardenas O (2016) Workload and cortisol levels in helicopter combat pilots during simulated flights. Revista Andal Med Deporte 9(1):7–11

    Article  Google Scholar 

  • Ghaderyan P, Abbasi A (2016) An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations. Int J Psychophysiol 110:91–101

    Article  Google Scholar 

  • Ghaderyan P, Abbasi A, Ebrahimi A (2018) Time-varying singular value decomposition analysis of electrodermal activity: a novel method of cognitive load estimation. Measurement 126:102–109

    Article  Google Scholar 

  • Gil-Monte P (2012) Riesgos psicosociales en el trabajo y salud ocupacional. Rev Peru Med Exp Salud Publica 237–241

    Google Scholar 

  • Gore BF (2018) Chapter 3 - Workload and fatigue. In: Sgobba T, Kanki B, Clervoy J-F, Sandal GM (eds) Space safety and human performance. Butterworth-Heinemann, pp 53–85. https://doi.org/10.1016/B978-0-08-101869-9.00003-0

  • Grassmann M, Vlemincx E, von Leupoldt A, Van den Bergh O (2015) The role of respiratory measures to assess mental load in pilot selection. Ergonomics 59(6):745–756

    Article  Google Scholar 

  • Grassmann M, Vlemincx E, von Leupoldt A, Van den Bergh O (2017) Individual differences in Cardiorespiratory measures of mental workload: an investigation of negative affectivity and cognitive avoidant coping in pilot candidates. Appl Ergon 59:274–282

    Article  Google Scholar 

  • Haji FA, Rojas D, Childs R, de Ribaupierre S, Dubrowski A (2015) Measuring cognitive load: performance, mental effort, and simulation task complexity. Med Educ 49:815–827

    Article  Google Scholar 

  • Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In Hancock PA, Meshkati N (eds), Human mental workload. Advances in psychology, pp 139–183

    Google Scholar 

  • Haslam R, Waterson P (2013) Ergonomics and sustainability. Ergonomics 56(3):343–347

    Article  Google Scholar 

  • Heine T, Lenis G, Reichensperger P, Beran T, Doessel O, Deml B (2017) Electrocardiographic features for the measurement of drivers` mental workload. Appl Ergon 61:31–43

    Article  Google Scholar 

  • Helton WS (2004) Validation of a short stress state questionnaire. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp 1238–1242

    Google Scholar 

  • Hidalgo-Muñoz AR, Mouratille D, Matton N, Causse M, Rouillard Y, El-Yagoubi R (2018) Cardiovascular correlates of emotional state, cognitive workload, and time-on-task effect during a realistic flight simulation. Int J Psychophysiol 128:62–69

    Article  Google Scholar 

  • Horat SK, Hermann FR, Favre G, Terzis J, Debatisse D et al (2016) Assessment of mental workload: a new electrophysiological method based on intra-block averaging of ERP amplitudes. Neuropsychologia 82:11–17

    Article  Google Scholar 

  • Hsu FW, Chiuhsiang JL, Lee YH, Chen HJ (2016) Effects of elevation change on mental stress in high voltage transmission tower construction workers. Appl Ergono 56:101–107

    Article  Google Scholar 

  • Huang S, Li J, Zhang P, Zhang W (2018) Detection of mental fatigue state with wearable ECG devices. Int J Med Informatics 119:39–46

    Article  Google Scholar 

  • Huggins A, Claudio D (2019) A mental workload-based patient scheduling model for a cancer clinic. Oper Res Health Core 20:56–65

    Google Scholar 

  • IEA (2019) Definition and domains of rrgonomics, December 17. Retrieved from International Ergonomics Association. https://www.iea.cc/whats/index.html

  • Jaquess KJ, Lo LC, Oh H, Lu C, Ginsberg A, Tan YY, Gentili RJ (2018) Changes in mental workload and motor performance throughout multiple practice sessions under various levels of task difficulty. Neuroscience 393:305–318

    Article  Google Scholar 

  • Jiang X, Zheng B, Bednarik R, Atkins MS (2015) Pupil responses to continuous aiming movements. Int J Human Comp Stud 83:1–11

    Article  Google Scholar 

  • Jiménez R, Cárdenas D, González-Anera R, Jiménez JR, Vera J (2018) Measuring mental workload: ocular astigmatism aberration as a novel objective index. Ergonomics 61(4):506–516

    Article  Google Scholar 

  • Ke Y, Qi H, Zhang L, Chen S, Jiao X, Zhou P, Zhao X, Wan B, Ming D (2015) Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression. Int J Psychophysiol 98:157–166

    Article  Google Scholar 

  • Kearney P, Li WC, Yu CS, Braithwaite G (2019) The impact of alerting designs on air traffic controller’s eye movement patterns and situation awareness. Ergonomics 62(2):305–318

    Article  Google Scholar 

  • Kim JH, Yang X (2017) Applying fractal analysis to pupil dilation for measuring complexity in a process monitoring task. Applied Ergonomics, pp 61–69

    Google Scholar 

  • Klonowicz T (2015) Mental workload and health: a latent threat. Int J Occup Saf Ergono 1(2):130–135

    Article  Google Scholar 

  • Kosti MV, Georgiadis K, Adamos DA, Laskaris N, Spinellis D, Angelis L (2018) Towards an affordable brain-computer interface for the assessment of programmers’ mental workload. Int J Hum Comput Stud 115:52–66

    Article  Google Scholar 

  • Kostenko A, Rauffet P, Chauvin C, Coppin G (2016) A dynamic closed-looped and multidimensional model for mental workload evaluation. IFAC-PapersOnLine 49(19): 549–554

    Google Scholar 

  • Kujawinska A, Vogt K, Wachowiak F (2015) Ergonomics as a significant factor of sustainable production. In: Golinska P (ed), Technology management for sustainable production and logistics. Springer, Berlin, pp 193–203. https://doi.org/10.1007/978-3-642-33935-6_10

  • Kumar N, Kumar J (2016) Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput Sci 84:70–78

    Article  Google Scholar 

  • Li LP, Liu ZG, Zhu HY, Zhu L, Huang YC (2019) Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers’ mental workload under simulated driving conditions. Ergonomics. https://doi.org/10.1080/00140139.2018.1535093

    Article  Google Scholar 

  • Liu T, Pelowski M, Pang C, Zho Y, Cai J (2016) Near-Infrared spectroscopy as a tool for driving research. Ergonomics 59(3):368–379

    Article  Google Scholar 

  • Luque-Casado A, Perales JC, Cárdenas D, Sanabria D (2016) Heart rate variability and cognitive processing: The autonomic response to task demands. Biol Psychol 113:83–90

    Article  Google Scholar 

  • Luximon A, Goonetilleke RS (2001) Simplified subjective workload assessment technique. Ergonomics 44(3):229–243

    Article  Google Scholar 

  • Mandrick K, Peysakhovich V, Rémy F, Lepron E, Causse M (2016) Neural and psychophysiological correlates of human performance under stress and high mental workload. Biol Psychol 121:62–73

    Article  Google Scholar 

  • Mansikka H, Simola P, Virtanen K, Harris D, Oksama L (2016) Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics 59(10):1344–1352

    Article  Google Scholar 

  • Marchitto M, Benedetto S, Baccino T, Cañas JJ (2016) Air traffic control: Ocular metrics reflect cognitive complexity. Int J Ind Ergon 54:120–130

    Article  Google Scholar 

  • Marinescu AC, Sharples S, Ritchie C, Sánchez López T, McDowell M, Morvan H (2018) Physiological parameter response to variation of mental workload. Hum Factors 60:31–56

    Google Scholar 

  • Marinescu A, Sharples S, Ritchie AC, Sánchez López T, McDowell M, Morvan H (2016) Exploring the relationship between mental workload, variation in performance and physiological parameters. IFAC-PapersOnLine 49(19):591–596

    Article  Google Scholar 

  • Marquart G, Cabrall C, de Winter J (2015) Review of eye-related measures of drivers’ mental workload. Procedia Manuf 3:2854–2861

    Article  Google Scholar 

  • Matthews G, Joyner L, Gilliland K, Campbell S, Falconer S, Huggins J (1999) Validation of a comprehensive stress state questionnaire: towards a state ‘big three’? In: Mervielde IDI (ed), Personality psychology in Europe 7:335–350

    Google Scholar 

  • Miller S (2001) Literature review workload measures. National Advanced Driving Simulator, Iowa. http://www.nads-sc.uiowa.edu/publicationStorage/200501251347060.N01-006.pdf. Accessed 27 Oct 2019

  • Morales JM, Ruiz-Rabelo JF, Diaz-Piedra C, Din Stasi LL (2019) Detecting mental workload in surgical teams using a wearable single-channel electroencephalographic device. J Surg Educ. https://doi.org/10.1016/j.jsurg.2019.01.005

    Article  Google Scholar 

  • Morris CE, Winchester LJ, Jackson AJ, Tomes AS, Neal WA, Wilcoxen D, Chander H, Arnett SW (2018) Effect of a simulated tactical occupation task on physiological strain index, stress, and inflammation. Int J Occup Saf Ergon. https://doi.org/10.1080/10803548.2018.1482053

    Article  Google Scholar 

  • Mun A, Whang M, Park MC (2017) Effects of mental workload on involuntary attention: a somatosensory ERP study. Neuropsychologic, pp 7–20

    Google Scholar 

  • Murai K, Kitamura K, Hayashi Y (2015) Study of a port coordinator’s mental workload based on facial temperature. Procedia Comput Sci 60:1668–1675

    Article  Google Scholar 

  • Nadima H (2014) CD de Monografias. Regimenes de Trabajo y Descanso. Matanzas, Cuba: Universidad de Matanzas “Camilo Cienfuegos”

    Google Scholar 

  • Nieto J (2014) Occupational diseases, a pandemic that requires prevention [in Spanish]. Medicina y Seguridad del Trabajo 60(234):1–3

    Article  Google Scholar 

  • Nygren TE (1991) Psychometric properties of subjective workload measurement techniques: implications for their use in the assessment of perceived mental workload. Hum Factors 33(1):17–33

    Article  Google Scholar 

  • Ogawa T, Takahashi M, Kawashima R (2016) Human cognitive control mode estimation using JINS MEME. IFAC-PapersOnLine 49(19):331–336

    Article  Google Scholar 

  • Ohtsuka R, Wang J, Chihara T, Yamanaka K, Morishima K, Daimoto H (2015) Estimation of mental workload during motorcycle operation. Procedia Manuf 3:5313–5318

    Article  Google Scholar 

  • Omurtag A, Roy R, Dehais F, Chatty L, Garbey M (2019) Tracking mental workload by multimodal measurements in the operating room. Elsevier. In Neuroergonomics, pp 99–103. https://doi.org/10.1016/B978-0-12-811926-6.00016-6

  • Orlandi L, Brooks B (2018) Measuring mental workload and physiological reactions in marine pilots: Building bridges towards redlines of performance. Appl Ergon 69:74–92

    Article  Google Scholar 

  • Orsila R, Virtanen M, Luukkaala T, Tarvainen M, Karjalainen P, Viik J, Savinainen M, Nygard C (2015) Perceived mental stress and reactions in heart rate variability - a pilot study among employees of an electronics company. Int J Occup Saf Ergon 14(3):275–283

    Article  Google Scholar 

  • Paas FG (1992) Training strategies for attaining transfer of problem-solving skills in statistics: a cognitive load approach. J Educ Psychol 64:429–434

    Article  Google Scholar 

  • Park S, Jeong S, Myung R (2018) Modeling of multiple sources of workload and time pressure effect with ACT-R. Int J Ind Ergon 63:37–48

    Article  Google Scholar 

  • Pejtersen JH, Kristensen TS, Borg V, Bjorner JB (2010) The second version of the Copenhagen psychosocial questionnaire. Scandinavian J Public Health 38:8–24

    Article  Google Scholar 

  • Peng HT, Bouak F, Wang W, Chow R, Vartanian O (2018) An improved model to predict performance under mental fatigue. Ergonomics 61(7):988–1003

    Article  Google Scholar 

  • Peysakhovich V, Causse M, Scannella S, Dehais F (2015) Frequency analysis of a task-evoked pupillary response: luminance-independent measure of mental effort. Int J Psychophysiol 97:30–37

    Article  Google Scholar 

  • Pickup L, Wilson JR, Norris BJ, Mitchell L, Morrisroe G (2005) The Integrated Workload Scale (IWS): a new self-report tool to assess railway signaller workload. Appl Ergon 36:681–693

    Article  Google Scholar 

  • Radjiyev A, Qiu H, Xiong S, Nam K (2015) Ergonomics and sustainable development in the past two decades (1992-2011): research trends and how ergonomics can contribute to sustainable development. Appl Ergon 46:67–75

    Article  Google Scholar 

  • Reid GB, Nygren TE (1988) The Subjective workload assessment technique: a scaling procedure for measuring mental workload. Adv Psychol 53:185–218

    Article  Google Scholar 

  • Rodriguez Erhar R (2006) Mental load assessment of workstation workers in computing with al-ternative natural and artificial lighting. Hum Environment and Housing Laboratory CRICYT, Mendoza, Colombia

    Google Scholar 

  • Roy RN, Moly A, Dehais F, Scannella S (2019) EEG and fNIRS connectivity features for mental workload assessment: a preliminary study. Elsevier In Neuroergonomics, pp 327–328. http://dx.doi.org/10.1016/B978-0-12-811926-6.00098-1

    Google Scholar 

  • Rupp MA, Sweetman R, Sosa AE, Smither JA, McConnell DS (2017) Searching for affective and cognitive restoration: examining the restorative effects of casual video game play. Hum Factors 59:1096–1107

    Google Scholar 

  • Rusnock C, Borghetti BJ (2018) Workload profiles: a continuous measure of mental workload. Int J Ind Ergon 63:49–64

    Article  Google Scholar 

  • Shakouri M, Ikuma LH, Aghazadeh F, Nahmens I (2018) Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: the case of the highway work zone. Int J Ind Ergon 66:136–145

    Article  Google Scholar 

  • Shaw EP, Rietschel JC, Hendershot BD, Pruziner AL, Miller MW, Hatfield B, Gentili R (2018) Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Int J Ind Ergon 134:136–145

    Google Scholar 

  • Shuggi IM, Oh H, Shewokis PA, Gentili RJ (2017) Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty. Neuroscience 360:166–179

    Article  Google Scholar 

  • Singh B, Bharti N (2015) Software tools for heart rate variability analysis. Int J Recent Sci Res 6(4):3501–3506

    Google Scholar 

  • Spielberger CD, Gonzalez-Reigosa F, Martinez-Urrutia A, Natalicio LF, Natalicio DS (1971) Development of the Spanish edition of the State-Trait anxiety inventory. Interam J Psycholo 5:145–158

    Google Scholar 

  • Spielberger CD, Gorsuch RL, Lushene RE (1970) The state-trait anxiety inventory (test manual). Consulting Psychologists Press, Palo Alto, CA

    Google Scholar 

  • Stanley S (2020) NAPS, April 30. Retrieved from Manufacturing in Mexico. https://napsintl.com/manufacturing-in-mexico/

  • Teo G, Reinerman-Jones L, Matthews G, Szalma J (2015) Comparison of measures used to assess the workload of monitoring an unmanned system in a simulation mission. Procedia Manuf 3:1006–1013

    Article  Google Scholar 

  • Thatcher A, Waterson P, Todd A, Moray N (2018) State of science: ergonomics and global issues. Ergonomics 61(2):197–213

    Article  Google Scholar 

  • Tsang PS, Velazquez V (1996) Diagnosticity and multidimensional subjective workload ratings. Ergonomics 39(3):358–381

    Article  Google Scholar 

  • United Nations (1987) Report of the World Commission on environment and development: our common future. United Nations, New York, NY

    Google Scholar 

  • US Army Research Lab (2019). Ready by fatigue science, December 2. Retrieved from https://www.fatiguescience.com/sleep-science-technology/

  • Vera J, Jiménez R, García JA, Cárdenas D (2017) Intraocular pressure is sensitive to cumulative and instantaneous mental workload. Appl Ergon 60:313–319

    Article  Google Scholar 

  • Wang D, Chen J, Zhao D, Zheng C, Wu X (2017) Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system. Autom Constr 82:122–137

    Article  Google Scholar 

  • Wang J, Ohtsuka R, Yamanaka K, Shioda K, Kawakarni M (2015) Relation between mental workload and visual information processing. Procedia Manuf 3:5308–5312

    Article  Google Scholar 

  • Wang Y, Zhang J, Wang R (2016) Mental workload recognition by combining wavelet packet transform and kernel spectral regression techniques. IFAC-PapersOnLine 49(19):561–566

    Article  Google Scholar 

  • Wierwille WW, Casali JC (1983) A validated rating scale for global mental workload measurement applications. Proc Hum Factors Soc 27:129–133

    Google Scholar 

  • Wierwille WW, Eggemeier FT (1993) Recommendations for mental workload measurement in a test and evaluation environment. Hum Factors 35(2):263–281

    Article  Google Scholar 

  • Wixted F, Shewlin M, O’Sullivan LW (2019) Distress and worry as mediators in the relationship between psychosocial risks and upper body musculoskeletal complaints in highly automated manufacturing. Ergonomics 61(8):1079–1093

    Article  Google Scholar 

  • Yan S, Tran CC, Wei Y, Habiyaremye JL (2017) Driver’s mental workload prediction model bases on physiological indices. Int J Occup Saf Ergon. https://doi.org/10.1080/10803548.2017.1368951

    Article  Google Scholar 

  • Young M, Brookhuls K, Wickens C, Hancock P (2015) State of science: mental workload in ergonomics. Ergonomics 58(1):1–17

    Article  Google Scholar 

  • Yung M, Wells R (2017) Responsive upper limb and cognitive fatigue measures during light precision work: an 8-hour simulated micro-pipetting study. Ergonomics 60(7):940–956

    Article  Google Scholar 

  • Zadry HR, Dawal SZ, Taha Z (2016) Development of statistical models for predicting muscle and mental activities during repetitive precision tasks. Int J Occup Saf Ergon (JOSE) 22(3):374–383

    Article  Google Scholar 

  • Zhang C (2018) Work and Non-Work Activities in Replenishing Workday Energy: Meetings, Individual work, and Micro Breaks. Michigan: University of Michigan

    Google Scholar 

  • Zhang N, Fard M, Bhulyan MH, Verhagen D, Azari MF, Robinson SR (2018a) The effects of physical vibration on heart rate variability as a measure of drowsiness. Ergonomics 61(9):1259–1272

    Article  Google Scholar 

  • Zhang Y, Wang W, Chu Y, Yuan X (2018b) Real-time and user-independent feature classification of forearm using EMG signals. J Soc Inf Display 27:101–108

    Article  Google Scholar 

Download references

Acknowledgements

The Tecnológico Nacional de México Campus Cd. Juárez, Tecnológico Nacional de México Campus Ciudad Cuauhtémoc and The Universidad Autónoma de Ciudad Juárez supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Ivette Arana-De las Casas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arana-De las Casas, N.I., Maldonado-Macías, A.A., De La Riva-Rodríguez, J., Sáenz-Zamarrón, D., Alatorre-Ávila, J.F., García-Grajeda, E. (2021). Mental Workload Management and Evaluation: A Literature Review for Sustainable Processes and Organizations. In: Realyvásquez Vargas, A., García-Alcaraz, J.L., Z-Flores, E. (eds) New Perspectives on Applied Industrial Ergonomics. Springer, Cham. https://doi.org/10.1007/978-3-030-73468-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73468-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73467-1

  • Online ISBN: 978-3-030-73468-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics