Skip to main content

Energy Efficient Service Composition with Delay Guarantee in a Cloud-Edge System

  • Conference paper
  • First Online:
Edge Computing and IoT: Systems, Management and Security (ICECI 2020)

Abstract

In a cloud-edge system, mobile users submit comprehensive service requests, on-the-fly service composition to orchestrate service components from different edge nodes is a promising way to achieve a quick response to these requests. Since several mobile applications consume large amount of energy during waiting for the responses, it is critical to achieve less service delay for energy saving as well as improve QoE (Quality of Experience). However, the service completion time in an edge is quite unstable, which increases the overall response time of the composite service. This paper argues that we may accelerate services through service clone via different edges, so that we can guarantee the overall response time of the composite service. And since the data fetch is also time consuming, we propose an effective data-aware service composition algorithm via service cloning to minimize the overall response time. We implement the algorithm and evaluate the performance with extensive simulations. The simulation results show that the proposed algorithm has a good performance improvement on service delay and energy consumption reduction, compared to the traditional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing: a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)

    Google Scholar 

  2. Paya, A., Marinescu, D.C.: Energy-aware load balancing and application scaling for the cloud ecosystem. IEEE Trans. Cloud Comput. 5(1), 15–27 (2017)

    Article  Google Scholar 

  3. Li, K.: Improving multicore server performance and reducing energy consumption by workload dependent dynamic power management. IEEE Trans. Cloud Comput. 4(2), 122–137 (2016)

    Article  Google Scholar 

  4. Deng, S., Wu, H., Tan, W., Xiang, Z., Wu, Z.: Mobile service selection for composition: an energy consumption perspective. IEEE Trans. Autom. Sci. Eng. 14(3), 1478–1490 (2017)

    Article  Google Scholar 

  5. Gabry, F., Bioglio, V., Land, I.: On energy-efficient edge caching in heterogeneous networks. IEEE J. Sel. Areas Commun. 34(12), 3288–3298 (2016)

    Article  Google Scholar 

  6. Wu, H., Deng, S., Li, W., Fu, M., Yin, J., Zomaya, A.Y.: Service selection for composition in mobile edge computing systems. In: 2018 IEEE International Conference on Web Services (ICWS), San Francisco, CA, pp. 355–358 (2018)

    Google Scholar 

  7. Sun, H., Zhou, F., Hu, R.Q.: Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Trans. Veh. Technol. 68(3), 3052–3056 (2019)

    Google Scholar 

  8. Li, X., Wu, J., Lu, S.: QoS-aware service selection in geographically distributed clouds. In: 2013 22nd International Conference on Computer Communication and Networks (ICCCN), Nassau, pp. 1–5 (2013)

    Google Scholar 

  9. Wang, S., Zhou, A., Yang, F., Chang, R.N.: Towards network-aware service composition in the cloud. In: IEEE Transactions on Cloud Computing

    Google Scholar 

  10. Wang, S., Zhao, Y., Huang, L., Jinliang, X., Hsu, C.-H.: QoS prediction for service recommendations in mobile edge computing. J. Parallel Distrib. Comput. 127, 134–144 (2019)

    Article  Google Scholar 

  11. Li, X., Lian, Z., Qin, X., Abawajyz, J.: Delay-aware resource allocation for data analysis in cloud-edge system. In: IEEE International Conference on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). Melbourne, Australia, vol. 2018, pp. 816–823 (2018)

    Google Scholar 

  12. Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the edge: a scalable IoT architecture based on transparent computing. IEEE Netw. 31(5), 96–105 (2017)

    Article  Google Scholar 

  13. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. In: IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681 (2017)

    Google Scholar 

  14. Lopez, P.G., et al.: Edge-centric computing: vision and challenges. SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by science and technology project of State Grid Corporation of China in 2020, Research and Application of Key Technologies of Multiple Data Centers Cooperative Operation and Intelligent Operation and Maintenance for Multi-stite integration, project No. 5210ED200027.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Q., Xu, M., Li, H., Yu, J., Li, X., Qian, Z. (2021). Energy Efficient Service Composition with Delay Guarantee in a Cloud-Edge System. In: Jiang, H., Wu, H., Zeng, F. (eds) Edge Computing and IoT: Systems, Management and Security. ICECI 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 368. Springer, Cham. https://doi.org/10.1007/978-3-030-73429-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73429-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73428-2

  • Online ISBN: 978-3-030-73429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics