Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 395 Accesses

Abstract

In this section, the term fiber-reinforced polymer (FRP) is defined. Subsequently, the industrial importance of FRPs is shown and specific characteristics of FRPs, which are the reason for this importance, are explained. Afterward, the differences between conventional and integrated product development are presented, and it is shown why integrated product development is of such great importance, especially for FRPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This number does not include short fiber-reinforced thermoplastics, with a fiber length smaller than 2 mm, which are mainly processed by injection molding. In 2017, the European demand for these materials only exceeded 1.400 kt [7].

  2. 2.

    The depicted model P601 was built from 1964 to 1990.

  3. 3.

    The depicted model is a BMW i3 120Ah from 2019.

Literature

  1. Griffith, A.A., Eng, M.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221(582–593), 163–198 (1921)

    Google Scholar 

  2. Gordon, J.E.: The new science of strong materials: or why you don’t fall through the floor. Penguin UK, London (1991)

    Google Scholar 

  3. Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin (2007)

    Google Scholar 

  4. Neitzel, M., Mitschang, P., Breuer, U.: Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung Anwendung. Carl Hanser Verlag GmbH Co KG, Munich (2014)

    Book  Google Scholar 

  5. Gao, S.-L., Mäder, E.: Characterisation of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Compos. A Appl. Sci. Manuf. 33(4), 559–576 (2002)

    Article  Google Scholar 

  6. Puck, A.: Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. Hanser, Munich (1996)

    Google Scholar 

  7. Witten, E., Mathes, V., Sauer, M., Kühnel, M.: Composites-Marktbericht 2018: Marktentwicklungen, Trends, Ausblicke und Herausforderungen. AVK—Industrievereinigung verstärkte Kunststoffe e. V./Carbon Composites e. V. (2018)

    Google Scholar 

  8. Witten, E., Sauer, M., Kühnel, M.: Composites-Marktbericht 2017: Marktentwicklungen, Trends, Ausblicke und Herausforderungen. AVK Industrievereinigung verstärkte Kunststoffe e. V./Carbon Composites e. V. (2017)

    Google Scholar 

  9. Lässig, R., Eisenhut, M., Mathias, A., Schulte, R.T., Peters, F., Kühmann, T., Waldmann, T., Begemann, W.: Series production of high-strength composites—Perspectives for the german engineering industry. Roland Berger Strategy Consultants (Munich) (2012)

    Google Scholar 

  10. Canyon GmbH: Vertical Comfort Lateral Stiffness. Downloaded from https://www.canyon.com/en/innovation/vcls/, downloaded on 29.07.2018 (2018)

  11. Schimmer, F., Motsch, N., Hausmann, J., Magin, M., Bücker, M.: Analysis on formed bolted joints for thick-walled CFRP in wind power industry. In: 21st International Conference on Composite Materials, Xi’an, China, 20–25.08.2017 (2017)

    Google Scholar 

  12. Windkraft Journal: Torsionswelle Flexshaft 5.0 gewinnt Innovationspreise in Paris und Hannover (Article from 07.05.2013). Downloaded from https://www.windkraft-journal.de/2013/05/07/torsionswelle-flexshaft-5-0-gewinnt-innovationspreise-in-paris-und-hannover/39686, downloaded on 29.07.2018 (2013)

  13. Breuer, U.P.: Commercial Aircraft Composite Technology. Springer, Berlin (2016)

    Book  Google Scholar 

  14. Wiedemann, M., Sinapius, M.: Adaptive, Tolerant and Efficient Composite Structures. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  15. Friedrich, K., Breuer, U.P.: Multifunctionality of Polymer Composites: Challenges and New Solutions. William Andrew (Elsevier), Oxford and Waltham (2015)

    Google Scholar 

  16. Klingler, A., Sorochynska, L., Wetzel, B.: Toughening of glass fiber reinforced unsaturated polyester composites by core-shell particles. Key Eng. Mater. (2017)

    Google Scholar 

  17. Chapple, S., Anandjiwala, R.: Flammability of natural fiber reinforced composites and strategies for fire retardancy: a review. J. Thermoplast. Compos. Mater. 23(6), 871–893 (2010)

    Article  CAS  Google Scholar 

  18. Hannemann, B., Backe, S., Schmeer, S., Balle, F., Breuer, U., Schuster, J.: Hybridisation of CFRP by the use of continuous metal fibers (MCFRP) for damage tolerant and electrically conductive lightweight structures. Compos. Struct. 172, 374–382 (2017)

    Article  Google Scholar 

  19. Wetzel, B., Haupert, F., Zhang, M.Q.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63(14), 2055–2067 (2003)

    Article  CAS  Google Scholar 

  20. Semar, J., May, D., Mitschang, P.: Evaluation of different perforation patterns for laminate-integrated heating foils in wind turbine rotor blades. In: 18th European Conference on Composite Materials, Athens, Greece (2018)

    Google Scholar 

  21. Gurka, M.: The Physics of Multifunctional Materials: Concepts, Materials, Applications. DEStech Publications Inc., Lancaster (2019)

    Google Scholar 

  22. Pleşa, I., Noţingher, P.V., Schlögl, S., Sumereder, C., Muhr, M.: Properties of polymer composites used in high-voltage applications. Polymers 8(5), 173 (2016)

    Article  Google Scholar 

  23. Al-Oqla, F.M., Sapuan, S.: Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354 (2014)

    Article  CAS  Google Scholar 

  24. Hildebrandt, K., Mitschang, P.: Effect of incorporating nanoparticles in thermoplastic fiber reinforced composites on the electrical conductivity. In: 18th International Conference on Composite Materials, Jeju Island, South Korea, 21–26.08.2011 (2011)

    Google Scholar 

  25. Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., Chen, B.: Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016)

    Article  CAS  Google Scholar 

  26. Plastics Today: Plastic clip advances treatment of aneurysms (Article from 22.11.2016). Downloaded from https://www.plasticstoday.com/medical/plastic-clip-advances-treatment-aneurysms/176833759246139?cid=flyout, downloaded on 09.09.2018 (2016)

  27. Sommer, M.: Chancen für SMC und BMC im Automobilbau. 10. Internationale AVK-Tagung für verstärkte Kunststoffe und technische Duroplaste, Stuttgart: 5–6. November 2007 (2007)

    Google Scholar 

  28. Ernstberger, U., Weissinger, J., Frank, J.: Mercedes-Benz SL: Entwicklung und Technik. Springer Fachmedien Wiesbaden (2013)

    Google Scholar 

  29. Asghari, F., Samiei, M., Adibkia, K., Akbarzadeh, A., Davaran, S.: Biodegradable and biocompatible polymers for tissue engineering application: a review. Artifi. Cells, Nanomed. Biotechnol. 45(2), 185–192 (2017)

    Article  CAS  Google Scholar 

  30. Kunststoffe International: Thermoplastischer offaxisstabiler Crashabsorber—Crash-Muffin aus Faser-Kunststoff-Verbunden (Article from 03.11.2014). Downloaded from https://www.kunststoffe.de/produkte/uebersicht/beitrag/thermoplastische-crash-muffins-crashabsorber-aus-faser-kunststoff-verbunden-FRP-945632.html, downloaded on 09.09.2018 (2014)

  31. Eickenbusch, H., Krauss, O.: Kohlenstofffaserverstärkte Kunststoffe im Fahrzeugbau—Ressourceneffizienz und Technologien. VDI Zentrum Ressourceneffizienz GmbH, Berlin (2013)

    Google Scholar 

  32. Oliveux, G., Dandy, L.O., Leeke, G.A.: Current status of recycling of fiber reinforced polymers: review of technologies, reuse and resulting properties. Prog. Mater Sci. 72, 61–99 (2015)

    Article  CAS  Google Scholar 

  33. Königsreuther, P.: MaschinenMarkt: Endlosfaserverstärkte Thermoplaste haben ein öffentliches Forum (Article from 14.07.2015). Downloaded from https://www.maschinenmarkt.vogel.de/endlosfaserverstaerkte-thermoplaste-haben-ein-oeffentliches-forum-a-497623/, downloaded on 31.05.2019 (2015)

  34. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit. Carl Hanser Verlag GmbH Co KG, Munich (2013)

    Book  Google Scholar 

  35. Pahl, G., Beitz, W., Schulz, H.-J., Jarecki, U.: Pahl/Beitz Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung, Methoden und Anwendung. Springer-Verlag, Berlin/Heidelberg (2013)

    Google Scholar 

  36. Schmitt, R., Pfeifer, T.: Qualitätsmanagement: Strategien–Methoden–Techniken. Carl Hanser Verlag GmbH Co KG, Munich (2015)

    Book  Google Scholar 

  37. Komorek, C.: Integrierte Produktentwicklung: der Entwicklungsprozeß in mittelständischen Unternehmen der metallverarbeitenden Serienfertigung. Erich Schmidt Verlag GmbH & Co KG, Berlin (1998)

    Google Scholar 

  38. Gerwin, D., Barrowman, N.J.: An evaluation of research on integrated product development. Manage. Sci. 48(7), 938–953 (2002)

    Article  Google Scholar 

  39. Deming, W.E.: Out of the Crisis: Quality, Productivity and Competitive Position. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  40. Kaizen, I.M.: The Key to Japan’s Competitive Success. MacGraw-Hill, New York (1986)

    Google Scholar 

  41. Zepf, H.P.: Faserverbundwerkstoffe mit thermoplastischer Matrix. Expert-Verlag, Renningen/Malmsheim (1997)

    Google Scholar 

  42. Faruk, O., Tjong, J., Sain, M.: Lightweight and Sustainable Materials for Automotive Applications. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  43. Verein Deutscher Ingenieure e. V.: VDI-Richtlinie 2014: Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund (Blatt 1: Grundlagen, 1998, Blatt 2: Konzeption und Gestaltung, 1993, Blatt 3 Berechnungen, 2006) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David May .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

May, D. (2021). Introduction. In: Integrated Product Development with Fiber-Reinforced Polymers. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-73407-7_1

Download citation

Publish with us

Policies and ethics