Skip to main content

Microstructures of Cold Sprayed Deposits

  • Chapter
  • First Online:
Cold Spray Additive Manufacturing

Abstract

The microstructure of cold sprayed deposits directly determines the properties of CSAM products and thus it is of importance to well understand the microstructural evolution mechanism of cold sprayed deposits. The microstructure is largely dependent on the plastic deformation behaviour of cold spray feedstock particles during their deposition. As the plastic deformation of cold spray particles is not homogenous with severe plastic deformation occurring at the contact interfaces, cold sprayed deposits typically have heterogenous microstructure and grain structures. A large number of dislocations and newly formed grains are only localized in the shear zones at the interparticle interfaces, while the microstructure in the interior region is mainly characterized by coarse grains. This chapter thoroughly discusses the formation mechanism of dislocations and ultra fine grains (UFGs) in various cold sprayed deposits during cold spray deposition. The formation mechanisms of intermetallic compounds and amorphous phases are also interpreted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Champagne, V.K. (ed.): Cold Spray Materials Deposition Process: Fundamentals and Applications. Woodhead Publ Ltd., Cambridge (2007)

    Google Scholar 

  2. Grujicic, M., Zhao, C.L.C., DeRosset, W.S.W., Helfritch, D.: Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater. Des. 25, 681–688 (2004). https://doi.org/10.1016/j.matdes.2004.03.008

    Article  Google Scholar 

  3. Hines, J.A., Vecchio, K.S., Ahzi, S.: A model for microstructure evolution in adiabatic shear bands. Metall. Mater. Trans. A. 29, 191–203 (1998)

    Article  Google Scholar 

  4. Gouldstone, A., Choi, W.B., Chi, W., Wu, Y., Sampath, S.: The Cold Spray Materials Deposition Process: Fundamentals and Applications. In: Champagne, V.K. (ed.) (2007)

    Google Scholar 

  5. Assadi, H., Kreye, H., Gärtner, F., Klassen, T.: Cold spraying–a materials perspective. Acta Mater. 116, 382–407 (2016)

    Article  Google Scholar 

  6. Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye, H.: Bonding mechanism in cold gas spraying. Acta Mater. 51, 4379–4394 (2003). https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  Google Scholar 

  7. Hassani-Gangaraj, M., Veysset, D., Nelson, K.A., Schuh, C.A.: In-situ observations of single micro-particle impact bonding. Scr. Mater. 145, 9–13 (2018). https://doi.org/10.1016/j.scriptamat.2017.09.042

    Article  Google Scholar 

  8. Wang, Q., Ma, N., Takahashi, M., Luo, X., Li, C.: Development of a material model for predicting extreme deformation and grain refinement during cold spraying. Acta Mater. 199, 326–339 (2020). https://doi.org/10.1016/j.actamat.2020.08.052

    Article  Google Scholar 

  9. King, P.C., Bae, G., Zahiri, S.H., Jahedi, M., Lee, C.: An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J. Therm. Spray Technol. 19, 620–634 (2010). https://doi.org/10.1007/s11666-009-9454-7

    Article  Google Scholar 

  10. King, P.C., Zahiri, S.H., Jahedi, M.: Microstructural refinement within a cold-sprayed copper particle. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 2115–2123 (2009). https://doi.org/10.1007/s11661-009-9882-5

  11. Schmidt, T., Gärtner, F., Assadi, H., Kreye, H.: Development of a generalized parameter window for cold spray deposition. Acta Mater. 54, 729–742 (2006). https://doi.org/10.1016/j.actamat.2005.10.005

    Article  Google Scholar 

  12. Yin, S., Wang, X.F., Suo, X.K., Liao, H.L., Guo, Z.W., Li, W.Y., Coddet, C.: Deposition behavior of thermally softened copper particles in cold spraying. Acta Mater. 61, 5105–5118 (2013). https://doi.org/10.1016/j.actamat.2013.04.041

    Article  Google Scholar 

  13. Rokni, M.R., Widener, C.A., Crawford, G.A.: Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf. Coat. Technol. 251, 254–263 (2014). https://doi.org/10.1016/j.surfcoat.2014.04.035

    Article  Google Scholar 

  14. Rivera-Díaz-del-Castillo, E.I.G.-N., J.S., P.E.J.: Dislocation annihilation in plastic deformation: II. Kocks–Mecking analysis. Acta Mater. 60, 2615–2624 (2012)

    Google Scholar 

  15. Grahle, P., Arzt, E.: Microstructural development in dispersion strengthened NiAl produced by mechanical alloying and secondary recrystallization. Acta Mater. 45, 201–211 (1997). https://doi.org/10.1016/S1359-6454(96)00159-0

  16. Rokni, M.R., Widener, C.A., Champagne, V.K., Crawford, G.A.: Microstructure and mechanical properties of cold sprayed 7075 deposition during non-isothermal annealing. Surf. Coat. Technol. 276, 305–315 (2015). https://doi.org/10.1016/j.surfcoat.2015.07.016

    Article  Google Scholar 

  17. Liu, T., Leazer, J.D., Brewer, L.N.: Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles. Acta Mater. 168, 13–23 (2019). https://doi.org/10.1016/j.actamat.2019.01.054

    Article  Google Scholar 

  18. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    Article  Google Scholar 

  19. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, J.J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130–207 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  Google Scholar 

  20. Li, C.-J., Yang, G.-J., Gao, P.-H., Ma, J., Wang, Y.-Y., Li, C.-X.: Characterization of nanostructured WC-Co deposited by cold spraying. J. Therm. Spray Technol. 16, 1011–1020 (2007). https://doi.org/10.1007/s11666-007-9096-6

    Article  Google Scholar 

  21. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

  22. Liu, T., Vaudin, M.D., Bunn, J.R., Ungár, T., Brewer, L.N.: Quantifying dislocation density in Al-Cu coatings produced by cold spray deposition. Acta Mater. 193, 115–124 (2020). https://doi.org/10.1016/j.actamat.2020.04.040

    Article  Google Scholar 

  23. Gourdet, S., Montheillet, F.: Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals. Acta Mater. 50, 2801–2812 (2002). https://doi.org/10.1016/S1359-6454(02)00098-8

  24. Humphreys, J., Rohrer, G.S., Rollett, A.: Chapter 13—hot deformation and dynamic restoration. In: Humphreys, J., Rohrer, G.S., Rollett, A. (eds.) Recrystallization and Related Annealing Phenomena (Third Edition), pp. 469–508. Elsevier, Oxford (2017)

    Chapter  Google Scholar 

  25. Evans, W.C., Dan, X., Houshmand, A., Müftü, S., Ando, T.: Microstructural characterization of aluminum 6061 splats cold spray deposited on aluminum 6061-T6 substrate. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50, 3937–3948 (2019). https://doi.org/https://doi.org/10.1007/s11661-019-05303-z

  26. Borchers, C., Gärtner, R., Stoltenhoff, T., Kreye, H.: Microstructural bonding features of cold sprayed face centered cubic metals. J. Appl. Phys. 96, 4288–4292 (2004). https://doi.org/10.1063/1.1789278

    Article  Google Scholar 

  27. Gholinia, A., Humphreys, F.J., Prangnell, P.B.: Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling. Acta Mater. 50, 4461–4476 (2002)

    Article  Google Scholar 

  28. Guo, Z., Miodownik, A.P., Saunders, N., Schillé, J.P.: Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scr. Mater. 54, 2175–2178 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.036

  29. Murr, L.E.: Interfacial Phenomena in Metals and Alloys (1975)

    Google Scholar 

  30. Schramm, R.E., Reed, R.P.: Stacking fault energies of seven commercial austenitic stainless steels. Metall. Trans. A. 6, 1345 (1975)

    Article  Google Scholar 

  31. Humphreys, F.J., Kalu, P.N.: Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys. Acta Metall. 35, 2815–2829 (1987). https://doi.org/10.1016/0001-6160(87)90281-1

  32. Nes, E., Ryum, N., Hunderi, O.: On the Zener drag. Acta Metall. 33, 11–22 (1985). https://doi.org/10.1016/0001-6160(85)90214-7

  33. Kim, J., Bae, G., Lee, C.: Characteristics of kinetic sprayed Ta in terms of the deposition behavior, microstructural evolution and mechanical properties: effect of strain-rate-dependent response of Ta at high temperature. Mater. Charact. 141, 49–58 (2018). https://doi.org/10.1016/j.matchar.2018.04.023

  34. Hassani, M., Veysset, D., Sun, Y.C., Nelson, K.A., Schuh, C.A.: Microparticle impact-bonding modes for mismatched metals: from co-deformation to splatting and penetration. Acta Mater. 199, 480–494 (2020). https://doi.org/10.1016/j.actamat.2020.08.038

    Article  Google Scholar 

  35. Suresh, S., Lee, S.W., Aindow, M., Brody, H.D., Champagne, V.K., Dongare, A.M.: Mesoscale modeling of jet initiation behavior and microstructural evolution during cold spray single particle impact. Acta Mater. 182, 197–206 (2020). https://doi.org/10.1016/j.actamat.2019.10.039

    Article  Google Scholar 

  36. Li, W.-Y., Liao, H., Li, C.-J., Li, G., Coddet, C., Wang, X.: On high velocity impact of micro-sized metallic particles in cold spraying. Appl. Surf. Sci. 253, 2852–2862 (2006). https://doi.org/10.1016/j.apsusc.2006.05.126

  37. Kassner, M.E., Barrabes, S.R.: New developments in geometric dynamic recrystallization. Mater. Ence Eng. A. 410, 152–155 (2005)

    Article  Google Scholar 

  38. Humphreys, J., Rohrer, G.S., Rollett, A.: Chapter 14—continuous recrystallization during and after large strain deformation. In: Humphreys, J., Rohrer, G.S., Rollett, A. (eds.) Recrystallization and Related Annealing Phenomena (Third Edition), pp. 509–526. Elsevier, Oxford (2017)

    Chapter  Google Scholar 

  39. Zou, Y., Qin, W., Irissou, E., Legoux, J.G., Yue, S., Szpunar, J.A.: Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: electron backscatter diffraction characterization. Scr. Mater. 61, 899–902 (2009). https://doi.org/10.1016/j.scriptamat.2009.07.020

  40. Sabard, A., Hussain, T.: Inter-particle bonding in cold spray deposition of a gas-atomised and a solution heat-treated Al 6061 powder. J. Mater. Sci. 54, 12061–12078 (2019). https://doi.org/10.1007/s10853-019-03736-w

    Article  Google Scholar 

  41. Ion, S.E., Humphreys, F.J., White, S.H.: Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 30, 1909–1919 (1982). https://doi.org/10.1016/0001-6160(82)90031-1

  42. Humphreys, J., Rohrer, G.S., Rollett, A.: Chapter 6—recovery after deformation. In: Humphreys, J., Rohrer, G.S., Rollett, A. (eds.) Recrystallization and Related Annealing Phenomena (Third Edition), pp. 199–244. Elsevier, Oxford (2017)

    Chapter  Google Scholar 

  43. Kang, K., Won, J., Bae, G., Ha, S., Lee, C.: Interfacial bonding and microstructural evolution of Al in kinetic spraying. J. Mater. Sci. 47, 4649–4659 (2012). https://doi.org/10.1007/s10853-012-6332-3

    Article  Google Scholar 

  44. Rokni, M.R., Widener, C.A., Nardi, A.T., Champagne, V.K.: Nano crystalline high energy milled 5083 Al powder deposited using cold spray. Appl. Surf. Sci. 305, 797–804 (2014). https://doi.org/10.1016/j.apsusc.2014.04.010

    Article  Google Scholar 

  45. Hall, A.C., Brewer, L.N., Roemer, T.J.: Preparation of aluminum coatings containing homogenous nanocrystalline microstructures using the cold spray process. J. Therm. Spray Technol. 17, 352–359 (2008)

    Article  Google Scholar 

  46. Ajdelsztajn, L., Jodoin, B., Kim, G.E., Schoenung, J.M.: Cold spray deposition of nanocrystalline aluminum alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 657–666 (2005). https://doi.org/10.1007/s11661-005-0099-y

  47. Tria, S., Elkedim, O., Hamzaoui, R., Guo, X., Bernard, F., Millot, N., Rapaud, O.: Deposition and characterization of cold sprayed nanocrystalline NiTi. Powder Technol. 210, 181–188 (2011). https://doi.org/10.1016/j.powtec.2011.02.026

    Article  Google Scholar 

  48. Meng, X., Zhang, J., Zhao, J., Liang, Y., Zhang, Y.: Influence of gas temperature on microstructure and properties of cold spray 304SS coating. J. Mater. Sci. Technol. 27, 809–815 (2011). https://doi.org/10.1016/S1005-0302(11)60147-3

    Article  Google Scholar 

  49. Yin, S., Suo, X., Liao, H., Guo, Z., Wang, X.: Significant influence of carrier gas temperature during the cold spray process. Surf. Eng. 30, 443–450 (2014). https://doi.org/10.1179/1743294414y.0000000276

    Article  Google Scholar 

  50. Tang, J., Zhao, Z., Li, N., Qiu, X., Shen, Y., Cui, X., Du, H., Wang, J., Xiong, T.: Influence of feedstock powder on microstructure and mechanical properties of Ta cold spray depositions. Surf. Coat. Technol. 377, 124903 (2019). https://doi.org/10.1016/j.surfcoat.2019.124903

    Article  Google Scholar 

  51. Moy, C.K.S., Cairney, J., Ranzi, G., Jahedi, M., Ringer, S.P.: Investigating the microstructure and composition of cold gas-dynamic spray (CGDS) Ti powder deposited on Al 6063 substrate. Surf. Coat. Technol. 204, 3739–3749 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.016

    Article  Google Scholar 

  52. Koivuluoto, H., Honkanen, M., Vuoristo, P.: Cold-sprayed copper and tantalum coatings—detailed FESEM and TEM analysis. Surf. Coat. Technol. 204, 2353–2361 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.001

    Article  Google Scholar 

  53. Kim, K., Watanabe, M., Kuroda, S.: Thermal softening effect on the deposition efficiency and microstructure of warm sprayed metallic powder. Scr. Mater. 60, 710–713 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.050

    Article  Google Scholar 

  54. King, P.C., Busch, C., Kittel-Sherri, T., Jahedi, M., Gulizia, S.: Interface melding in cold spray titanium particle impact. Surf. Coat. Technol. 239, 191–199 (2014). https://doi.org/10.1016/j.surfcoat.2013.11.039

    Article  Google Scholar 

  55. Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H.L., Li, W.Y., Lupoi, R.: Cold spray additive manufacturing and repair: fundamentals and applications. Addit. Manuf. 21, 628–650 (2018). https://doi.org/10.1016/j.addma.2018.04.017

    Article  Google Scholar 

  56. Shaha, S.K., Jahed, H.: Characterization of nanolayer intermetallics formed in cold sprayed Al powder on Mg substrate. Materials (Basel). 12, 1317 (2019)

    Google Scholar 

  57. Lee, H., Shin, H., Ko, K.: Effects of gas pressure of cold spray on the formation of Al-based intermetallic compound. J. Therm. Spray Technol. 19, 102–109 (2010). https://doi.org/10.1007/s11666-009-9407-1

    Article  Google Scholar 

  58. Callister Jr, W.D., Rethwisch, D.G.: Fundamentals of Materials Science and Engineering: An Integrated Approach. Wiley (2020)

    Google Scholar 

  59. Xiong, Y., Kang, K., Bae, G., Yoon, S., Lee, C.: Dynamic amorphization and recrystallization of metals in kinetic spray process. Appl. Phys. Lett. 92, 194101 (2008)

    Article  Google Scholar 

  60. Li, C.-J., Li, W.-Y., Wang, Y.-Y.: Formation of metastable phases in cold-sprayed soft metallic deposit. Surf. Coat. Technol. 198, 469–473 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.063

  61. Li, W.-Y., Li, C.-J., Yang, G.-J.: Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating. Appl. Surf. Sci. 257, 1516–1523 (2010). https://doi.org/10.1016/j.apsusc.2010.08.089

  62. Ko, K.H.H., Choi, J.O.O., Lee, H., Seo, Y.K.K., Jung, S.P.P., Yu, S.S.S.: Cold spray induced amorphization at the interface between Fe coatings and Al substrate. Mater. Lett. 149, 40–42 (2015). https://doi.org/10.1016/j.matlet.2015.02.118

    Article  Google Scholar 

  63. Xiong, Y., Xiong, X., Yoon, S., Bae, G., Lee, C.: Dependence of bonding mechanisms of cold sprayed coatings on strain-rate-induced non-equilibrium phase transformation. J. Therm. Spray Technol. 20, 860–865 (2011). https://doi.org/10.1007/s11666-011-9634-0

    Article  Google Scholar 

  64. Luo, X.-T., Yang, G.-J., Li, C.-J., Kondoh, K.: High strain rate induced localized amorphization in cubic BN/NiCrAl nanocomposite through high velocity impact. Scr. Mater. 65, 581–584 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.030

  65. Wang, Q., Qiu, D., Xiong, Y., Birbilis, N., Zhang, M.X.: High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate. Appl. Surf. Sci. 289, 366–369 (2014). https://doi.org/10.1016/j.apsusc.2013.10.168

    Article  Google Scholar 

  66. Branício, P.S., Rino, J.P.: Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study. Phys. Rev. B—Condens. Matter Mater. Phys. 62, 16950–16955 (2000). https://doi.org/10.1103/PhysRevB.62.16950

  67. Weeber, A.W., Bakker, H.: Amorphization by ball milling. A review. Phys. B Condens. Matter. 153, 93–135 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, S., Lupoi, R. (2021). Microstructures of Cold Sprayed Deposits. In: Cold Spray Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-73367-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73367-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73366-7

  • Online ISBN: 978-3-030-73367-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics