Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1330))

Abstract

Epithelial ovarian cancer is a lethal gynecological cancer. It is related to high mortality because the majority of the patients present in advanced stage and because of the high recurrence rates of the disease. Recurrent ovarian cancer is classified according to the time interval between the last platinum-based chemotherapy and the occurrence of recurrence, to platinum-sensitive and platinum-resistant. Many theories tried to explain development of resistance to platinum-based therapy. “Cancer stem cells” is one of these theories and is being currently under investigation by many groups. This chapter will demonstrate the suggested contribution of cancer stem cells to the development of recurrent ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87–108.

    Google Scholar 

  2. Sehouli, J., Senyuva, F., Fotopoulou, C., Neumann, U., Denkert, C., Werner, L., et al. (2009). Intra-abdominal tumor dissemination pattern and surgical outcome in 214 patients with primary ovarian cancer. Journal of Surgical Oncology, 99, 424–427.

    Article  PubMed  Google Scholar 

  3. Garcia, M., Jemal, A., Ward, E., Center, M., Hao, Y., Siegel, R., et al. (2007). Global cancer facts & figures 2007. American Cancer Society: Atlanta, GA.

    Google Scholar 

  4. National-Cancer-Comprehensive-Network. (2017). NCCN clinical practice guidelines in oncology (NCCN Guidelines®) ovarian cancer. NCCN.

    Google Scholar 

  5. AGO-Leitlinienkommission. (2013). S3-Leitlinie Diagnostik, Therapie und Nachsorge maligner Ovarialtumoren.

    Google Scholar 

  6. du Bois, A., Reuss, A., Pujade-Lauraine, E., Harter, P., Ray-Coquard, I., & Pfisterer, J. (2009). Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: A combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: By the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer, 115, 1234–1244.

    Article  PubMed  CAS  Google Scholar 

  7. Trimbos, J. B., Vergote, I., Bolis, G., Vermorken, J. B., Mangioni, C., Madronal, C., et al. (2003). Impact of adjuvant chemotherapy and surgical staging in early-stage ovarian carcinoma: European Organisation for Research and Treatment of Cancer-Adjuvant ChemoTherapy in Ovarian Neoplasm trial. Journal of the National Cancer Institute, 95, 113–125.

    Article  CAS  PubMed  Google Scholar 

  8. Hoskins, W. J., McGuire, W. P., Brady, M. F., Homesley, H. D., Creasman, W. T., Berman, M., et al. (1994). The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. American Journal of Obstetrics and Gynecology, 170, 974–9; discussion 9–80.

    Article  CAS  PubMed  Google Scholar 

  9. Winter, W. E., III, Maxwell, G. L., Tian, C., Carlson, J. W., Ozols, R. F., Rose, P. G., et al. (2007). Prognostic factors for stage III epithelial ovarian cancer: A Gynecologic Oncology Group Study. Journal of Clinical Oncology, 25, 3621–3627.

    Article  PubMed  Google Scholar 

  10. Ataseven, B., Grimm, C., Harter, P., Heitz, F., Traut, A., Prader, S., et al. (2015). Prognostic impact of debulking surgery and residual tumor in patients with epithelial ovarian cancer FIGO stage IV. Gynecologic Oncology, 140(2), 215–220.

    Article  PubMed  Google Scholar 

  11. Piccart, M. J., Bertelsen, K., James, K., Cassidy, J., Mangioni, C., Simonsen, E., et al. (2000). Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: Three-year results. Journal of the National Cancer Institute, 92, 699–708.

    Article  CAS  PubMed  Google Scholar 

  12. McGuire, W. P., Hoskins, W. J., Brady, M. F., Kucera, P. R., Partridge, E. E., Look, K. Y., et al. (1996). Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. The New England Journal of Medicine, 334, 1–6.

    Article  CAS  PubMed  Google Scholar 

  13. Omura, G., Blessing, J. A., Ehrlich, C. E., Miller, A., Yordan, E., Creasman, W. T., et al. (1986). A randomized trial of cyclophosphamide and doxorubicin with or without cisplatin in advanced ovarian carcinoma. A Gynecologic Oncology Group Study. Cancer, 57, 1725–1730.

    Article  CAS  PubMed  Google Scholar 

  14. du Bois, A., Luck, H. J., Meier, W., Adams, H. P., Mobus, V., Costa, S., et al. (2003). A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. Journal of the National Cancer Institute, 95, 1320–1329.

    Article  PubMed  CAS  Google Scholar 

  15. Ozols, R. F., Bundy, B. N., Greer, B. E., Fowler, J. M., Clarke-Pearson, D., Burger, R. A., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. Journal of Clinical Oncology, 21, 3194–3200.

    Article  CAS  PubMed  Google Scholar 

  16. Burger, R. A., Brady, M. F., Bookman, M. A., Fleming, G. F., Monk, B. J., Huang, H., et al. (2011). Incorporation of bevacizumab in the primary treatment of ovarian cancer. The New England Journal of Medicine, 365, 2473–2483.

    Article  CAS  PubMed  Google Scholar 

  17. Oza, A. M., Cook, A. D., Pfisterer, J., Embleton, A., Ledermann, J. A., Pujade-Lauraine, E., et al. (2015). Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial. The Lancet Oncology, 16, 928–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kehoe, S., Hook, J., Nankivell, M., Jayson, G. C., Kitchener, H., Lopes, T., et al. (2015). Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): An open-label, randomised, controlled, non-inferiority trial. The Lancet, 386, 249–257.

    Article  Google Scholar 

  19. Vergote, I., Amant, F., Kristensen, G., Ehlen, T., Reed, N. S., & Casado, A. (2011). Primary surgery or neoadjuvant chemotherapy followed by interval debulking surgery in advanced ovarian cancer. European Journal of Cancer, 47, S88–S92.

    Article  PubMed  Google Scholar 

  20. Fagotti, A., Ferrandina, G., Vizzielli, G., Fanfani, F., Gallotta, V., Chiantera, V., et al. (2016). Phase III randomised clinical trial comparing primary surgery versus neoadjuvant chemotherapy in advanced epithelial ovarian cancer with high tumour load (SCORPION trial): Final analysis of peri-operative outcome. European Journal of Cancer, 59, 22–33.

    Article  PubMed  Google Scholar 

  21. Wright, A. A., Bohlke, K., Armstrong, D. K., Bookman, M. A., Cliby, W. A., Coleman, R. L., et al. (2016). Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology clinical practice guideline. Journal of Clinical Oncology, 34, 3460–3473.

    Article  PubMed  Google Scholar 

  22. Armstrong, D. K., Bundy, B., Wenzel, L., Huang, H. Q., Baergen, R., Lele, S., et al. (2006). Intraperitoneal cisplatin and paclitaxel in ovarian cancer. The New England Journal of Medicine, 354, 34–43.

    Article  CAS  PubMed  Google Scholar 

  23. Cannistra, S. A. (2004). Cancer of the ovary. The New England Journal of Medicine, 351, 2519–2529.

    Article  CAS  PubMed  Google Scholar 

  24. Markman, M., Rothman, R., Hakes, T., Reichman, B., Hoskins, W., Rubin, S., et al. (1991). Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. Journal of Clinical Oncology, 9, 389–393.

    Article  CAS  PubMed  Google Scholar 

  25. Blackledge, G., Lawton, F., Redman, C., & Kelly, K. (1989). Response of patients in phase II studies of chemotherapy in ovarian cancer: Implications for patient treatment and the design of phase II trials. British Journal of Cancer, 59, 650–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.

    Article  CAS  PubMed  Google Scholar 

  27. Balbi, G., Di Prisco, L., Musone, R., Menditto, A., Cassese, E., Balbi, C., et al. (2002). Second-line with paclitaxel and carboplatin for recurrent disease following first paclitaxel and platinum compounds in ovarian carcinoma. European Journal of Gynaecological Oncology, 23, 347–349.

    CAS  PubMed  Google Scholar 

  28. Hoekstra, A. V., Hurteau, J. A., Kirschner, C. V., & Rodriguez, G. C. (2009). The combination of monthly carboplatin and weekly paclitaxel is highly active for the treatment of recurrent ovarian cancer. Gynecologic Oncology, 115, 377–381.

    Article  CAS  PubMed  Google Scholar 

  29. Rose, P. G., Fusco, N., Fluellen, L., & Rodriguez, M. (1998). Second-line therapy with paclitaxel and carboplatin for recurrent disease following first-line therapy with paclitaxel and platinum in ovarian or peritoneal carcinoma. Journal of Clinical Oncology, 16, 1494–1497.

    Article  CAS  PubMed  Google Scholar 

  30. Davis, A., Tinker, A. V., & Friedlander, M. (2014). “Platinum resistant” ovarian cancer: What is it, who to treat and how to measure benefit? Gynecologic Oncology, 133, 624–631.

    Article  CAS  PubMed  Google Scholar 

  31. Goodisman, J., Hagrman, D., Tacka, K. A., & Souid, A. K. (2006). Analysis of cytotoxicities of platinum compounds. Cancer Chemotherapy and Pharmacology, 57, 257–267.

    Article  CAS  PubMed  Google Scholar 

  32. Cohen, G. M. (1997). Caspases: The executioners of apoptosis. The Biochemical Journal, 326(Pt 1), 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petit, P. X., Zamzami, N., Vayssiere, J. L., Mignotte, B., Kroemer, G., & Castedo, M. (1997). Implication of mitochondria in apoptosis. Molecular and Cellular Biochemistry, 174, 185–188.

    Article  CAS  PubMed  Google Scholar 

  34. Nagata, S. (2000). Apoptotic DNA fragmentation. Experimental Cell Research, 256, 12–18.

    Article  CAS  PubMed  Google Scholar 

  35. Tapia, G., & Diaz-Padilla, I. (2013). Molecular mechanisms of platinum resistance in ovarian cancer. In I. Diaz-Padilla (Ed.), Ovarian cancer—A clinical and translational update. Rijeka: InTech.

    Google Scholar 

  36. Siddik, Z. H. (2003). Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265–7279.

    Article  CAS  PubMed  Google Scholar 

  37. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews. Cancer, 5, 275–284.

    Article  CAS  PubMed  Google Scholar 

  38. Massard, C., Deutsch, E., & Soria, J. C. (2006). Tumour stem cell-targeted treatment: Elimination or differentiation. Annals of Oncology, 17, 1620–1624.

    Article  CAS  PubMed  Google Scholar 

  39. Mimeault, M., Hauke, R., Mehta, P. P., & Batra, S. K. (2007). Recent advances in cancer stem/progenitor cell research: Therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of Cellular and Molecular Medicine, 11, 981–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Helleman, J., Jansen, M. P., Burger, C., van der Burg, M. E., & Berns, E. M. (2010). Integrated genomics of chemotherapy resistant ovarian cancer: A role for extracellular matrix, TGFbeta and regulating microRNAs. The International Journal of Biochemistry & Cell Biology, 42, 25–30.

    Article  CAS  Google Scholar 

  41. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  CAS  PubMed  Google Scholar 

  42. Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M., & Peault, B. (1992). Isolation of a candidate human hematopoietic stem-cell population. Proceedings of the National Academy of Sciences of the United States of America, 89, 2804–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ebben, J. D., Treisman, D. M., Zorniak, M., Kutty, R. G., Clark, P. A., & Kuo, J. S. (2010). The cancer stem cell paradigm: A new understanding of tumor development and treatment. Expert Opinion on Therapeutic Targets, 14, 621–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sherman, L., Sleeman, J., Herrlich, P., & Ponta, H. (1994). Hyaluronate receptors: Key players in growth, differentiation, migration and tumor progression. Current Opinion in Cell Biology, 6, 726–733.

    Article  CAS  PubMed  Google Scholar 

  47. Slevin, M., Krupinski, J., Gaffney, J., Matou, S., West, D., Delisser, H., et al. (2007). Hyaluronan-mediated angiogenesis in vascular disease: Uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology, 26, 58–68.

    Article  CAS  PubMed  Google Scholar 

  48. Elzarkaa, A. A., Sabaa, B. E., Abdelkhalik, D., Mansour, H., Melis, M., Shaalan, W., et al. (2016). Clinical relevance of CD44 surface expression in advanced stage serous epithelial ovarian cancer: A prospective study. Journal of Cancer Research and Clinical Oncology, 142, 949–958.

    Article  CAS  PubMed  Google Scholar 

  49. Misra, S., Hascall, V. C., Berger, F. G., Markwald, R. R., & Ghatak, S. (2008). Hyaluronan, CD44, and cyclooxygenase-2 in colon cancer. Connective Tissue Research, 49, 219–224.

    Article  CAS  PubMed  Google Scholar 

  50. Louderbough, J. M., & Schroeder, J. A. (2011). Understanding the dual nature of CD44 in breast cancer progression. Molecular Cancer Research, 9, 1573–1586.

    Article  CAS  PubMed  Google Scholar 

  51. Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marhaba, R., & Zoller, M. (2004). CD44 in cancer progression: Adhesion, migration and growth regulation. Journal of Molecular Histology, 35, 211–231.

    Article  CAS  PubMed  Google Scholar 

  53. Tölg, C., Hofmann, M., Herrlich, P., & Ponta, H. (1993). Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Research, 21, 1225–1229.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Haylock, D. N., & Nilsson, S. K. (2006). The role of hyaluronic acid in hemopoietic stem cell biology. Regenerative Medicine, 1, 437–445.

    Article  CAS  PubMed  Google Scholar 

  55. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  56. Weber, G. F., Ashkar, S., Glimcher, M. J., & Cantor, H. (1996). Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science, 271, 509–512.

    Article  CAS  PubMed  Google Scholar 

  57. Stern, R., Asari, A. A., & Sugahara, K. N. (2006). Hyaluronan fragments: An information-rich system. European Journal of Cell Biology, 85, 699–715.

    Article  CAS  PubMed  Google Scholar 

  58. Springer, T., Galfre, G., Secher, D. S., & Milstein, C. (1978). Monoclonal xenogeneic antibodies to murine cell surface antigens: Identification of novel leukocyte differentiation antigens. European Journal of Immunology, 8, 539–551.

    Article  CAS  PubMed  Google Scholar 

  59. Kay, R., Takei, F., & Humphries, R. K. (1990). Expression cloning of a cDNA encoding M1/69-J11d heat-stable antigens. Journal of Immunology, 145, 1952–1959.

    Article  CAS  Google Scholar 

  60. Hough, M. R., Rosten, P. M., Sexton, T. L., Kay, R., & Humphries, R. K. (1994). Mapping of CD24 and homologous sequences to multiple chromosomal loci. Genomics, 22, 154–161.

    Article  CAS  PubMed  Google Scholar 

  61. Rougon, G., Alterman, L. A., Dennis, K., Guo, X. J., & Kinnon, C. (1991). The murine heat-stable antigen: A differentiation antigen expressed in both the hematolymphoid and neural cell lineages. European Journal of Immunology, 21, 1397–1402.

    Article  CAS  PubMed  Google Scholar 

  62. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.

    Article  CAS  PubMed  Google Scholar 

  63. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D., & Witte, O. N. (2007). Isolation and functional characterization of murine prostate stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 181–186.

    Article  CAS  PubMed  Google Scholar 

  64. Bai, X. F., Li, O., Zhou, Q., Zhang, H., Joshi, P. S., Zheng, X., et al. (2004). CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. The Journal of Experimental Medicine, 200, 447–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kristiansen, G., Winzer, K. J., Mayordomo, E., Bellach, J., Schluns, K., Denkert, C., et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clinical Cancer Research, 9, 4906–4913.

    CAS  PubMed  Google Scholar 

  66. Kristiansen, G., Denkert, C., Schluns, K., Dahl, E., Pilarsky, C., & Hauptmann, S. (2002). CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. The American Journal of Pathology, 161, 1215–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Athanassiadou, P., Grapsa, D., Gonidi, M., Athanassiadou, A. M., Tsipis, A., & Patsouris, E. (2009). CD24 expression has a prognostic impact in breast carcinoma. Pathology, Research and Practice, 205, 524–533.

    Article  PubMed  Google Scholar 

  68. Burgos-Ojeda, D., Wu, R., McLean, K., Chen, Y. C., Talpaz, M., Yoon, E., et al. (2015). CD24+ ovarian cancer cells are enriched for cancer-initiating cells and dependent on JAK2 signaling for growth and metastasis. Molecular Cancer Therapeutics, 14, 1717–1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., Dinulescu, D. M., Connolly, D., Foster, R., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103, 11154–11159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115.

    Article  CAS  PubMed  Google Scholar 

  71. Mancebo, G., Sole-Sedeno, J. M., Pino, O., Miralpeix, E., Mojal, S., Garrigos, L., et al. (2017). Prognostic impact of CD133 expression in endometrial cancer patients. Scientific Reports, 7, 7687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.

    Article  PubMed  CAS  Google Scholar 

  73. Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 43, 935–946.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, B. B., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C., & Dirks, P. B. (2009). Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nature Reviews. Drug Discovery, 8, 806–823.

    Article  CAS  PubMed  Google Scholar 

  75. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756–760.

    Article  CAS  PubMed  Google Scholar 

  76. Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100, 672–679.

    Article  CAS  PubMed  Google Scholar 

  77. O’Hare, T., Corbin, A. S., & Druker, B. J. (2006). Targeted CML therapy: Controlling drug resistance, seeking cure. Current Opinion in Genetics & Development, 16, 92–99.

    Article  CAS  Google Scholar 

  78. Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366, 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bashashati, A., Ha, G., Tone, A., Ding, J., Prentice, L. M., Roth, A., et al. (2013). Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. The Journal of Pathology, 231, 21–34.

    Article  CAS  PubMed  Google Scholar 

  80. Poveda, A. M., Selle, F., Hilpert, F., Reuss, A., Savarese, A., Vergote, I., et al. (2015). Bevacizumab combined with weekly paclitaxel, Pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: Analysis by chemotherapy cohort of the randomized phase III AURELIA trial. Journal of Clinical Oncology, 33, 3836–3838.

    Article  CAS  PubMed  Google Scholar 

  81. Monk, B. J., Poveda, A., Vergote, I., Raspagliesi, F., Fujiwara, K., Bae, D.-S., et al. (2014). Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): A randomised, multicentre, double-blind, placebo-controlled phase 3 trial. The Lancet Oncology, 15, 799–808.

    Article  CAS  PubMed  Google Scholar 

  82. Oza, A. M., Cibula, D., Benzaquen, A. O., Poole, C., Mathijssen, R. H. J., Sonke, G. S., et al. (2015). Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. The Lancet Oncology, 16, 87–97.

    Article  CAS  PubMed  Google Scholar 

  83. Mirza, M. R., Monk, B. J., Herrstedt, J., Oza, A. M., Mahner, S., Redondo, A., et al. (2016). Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. The New England Journal of Medicine, 375, 2154–2164.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof Dr. Bassma El-Sabaa for her courtesy in providing material for Fig. 2.5.

We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr A. Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soliman, A.A., Elzarkaa, A.A., Malik, E. (2021). Epithelial Ovarian Cancer and Cancer Stem Cells. In: Schatten, H. (eds) Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies. Advances in Experimental Medicine and Biology, vol 1330. Springer, Cham. https://doi.org/10.1007/978-3-030-73359-9_2

Download citation

Publish with us

Policies and ethics