Skip to main content

Frontier Exploration

  • Chapter
  • First Online:
Remote Sensing for Hydrocarbon Exploration

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 2228 Accesses

Abstract

Frontier exploration means assessing an area for hydrocarbon prospectivity that lacks information and data. Satellite remote sensing provides the first set of potential fields data to enable the delineation of basins and build large regional geological models in 3D. These models can be used to execute exploration strategies such as the conjugate margin concept which transfers knowledge from known basins on margin to their unknown counterpart on the conjugate margin along fracture zones.

Remote sensing also plays a major role in providing the boundary conditions for basin and petroleum system models. These form the framework for more detailed interpretation once seismic data and well logs become available.

At field scale, interpretation carried out on remote sensing data at the surface can be used as in-situ geologic analogues to guide the structural and depositional interpretation of 3D seismic data in the subsurface.

The integration of satellite remote sensing and sparse regional 2D seismic sections give insights into the shallow structural framework through the mapping of shallow buried channels, which in turn often follow regional faults. In volcanic areas, the interpretation and integration of multiple satellite remote sensing data allows delineating the subsurface extent of volcanic rocks, thus giving clues for estimating the potential impact volcanism may have had on the maturity of hydrocarbons in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Interaction with Earth Surface

  • Braitenberg, C., Wienecke, S. & Wang, Y. (2006). Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research 111, B05407, https://doi.org/10.1029/2001GC000252.

  • Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics and Geosystems 4(3), https://doi.org/10.1029/2001GC000252.

  • Cande, S.C., Stock, J.M., Müller, R.D., & Ishihara, T. (2000). Cenozoic motion between East and West Antarctica, Nature 404, 145–150.

    Google Scholar 

  • Consortium for Ocean Leadership Inc. (2007). Ocean drilling program, Final Technical Report 1983–2007, National Science Foundation contracts ODP83-17349 and OCE93-08410, Washington DC, 2007.

    Google Scholar 

  • Crosby, A.G., McKenzie, D. & Sclater, J.G. (2006). The relationship between depth, age and gravity in the oceans, Geophysics Journal International 166, 553–573. https://doi.org/10.1111/j.1365-246X.2006.03015.x.

  • Gibbs, P.B., Brush, E.R. & Fiduk, J.C. (2003). The evolution of the syn rift and transition phases of the central/southern Brazilian and W. African conjugate margins: the implications for source rock distribution in time and space, and their recognition on seismic data, Proceedings 8th International Congress of the Brazilian Geophysical Society.

    Google Scholar 

  • Fairhead, J.D., Green, C.M. & Odegard, M.E. (2001). Satellite-derived gravity having an impact on marine exploration, The LEadging Edge, 873-876.

    Google Scholar 

  • Heine, C., Zoethout, J. & Müller, R.D. (2013). Kinematics of the South Atlantic rift. Solid Earth 4, 215–253, https://doi.org/10.5194/se-4-215-2013.

  • Laake, A. (2010). Integration of surface and subsurface data – From satellites to reservoir, EAGE/SEG Summer Research Workshop - Towards a Full Integration from Geosciences to Reservoir Simulation, paper 22461, https://doi.org/10.3997/2214-4609.201402470.

  • Laake, A., & Strobbia, C. (2013a). Mapping paleorivers from satellite radar and surface-wave velocities. In Proceedings 75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013, London, UK.

    Google Scholar 

  • Lentini, M.R., Fraser, S.I., Sumner, H.S. & Davies, R.J. (2010). Geodynamics of the central South Atlantic conjugate margins: implications for hydrocarbon potential. Petroleum Geoscience 16, 217–229. https://doi.org/10.1144/1354-079309-909

  • MacLeod, S.J., Williams, K.J., Müller, R.D. & MacLeod, S.J., Williams, S.E., Matthews, K.J., Müller, R.D., and Qin, X.D. (2017). A global review and digital database of large-scale extinct spreading centers: Geosphere. 13(3), 911–949, https://doi.org/10.1130/GES01379.1.

  • Mohole: http://nasonline.org/about-nas/history/archives/milestones-in-NAS-history/project-mohole.htm. [accessed 16 June 2020]

  • Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemčok, M. & Sinha, S.T. (2013). Conjugate divergent margins: an introduction, in: Mohriak, W. U., Danforth, A., Post, P. J., Brown, D. E., Tari, G. C., Nemčok, M. & Sinha, S. T. (eds), Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 1–10, https://doi.org/10.1144/SP369.26.

  • Müller, R.D., Roest, W.R., Royer, J.-Y., Gahagan, L.M. & Sclater, J.G. (1997). Digital isochrons of the world’s ocean floor. Journal of Geophysical Researc 102(B2), 3211–3214.

    Google Scholar 

  • Smith, W.H.F. & Sandwell, D.T. (1994). Bathymetry prediction from dense satellite altimetry and sparse shipboard bathymetry. Journal of Geophysical Research 99(B11), 21803–21824.

    Google Scholar 

  • Smith, W. H. F. & Sandwell, D. T.(1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957-1962.

    Google Scholar 

  • Zanella, E., Doran, H. & Collard, J. (2018). Is a conjugate an analog ?, GeoExPro Sept 2018, 14–17.

    Google Scholar 

Multi-Band Composite Images

Multiband Differences and Ratios

ETOPO1

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, Marine Geology and Geophysics Division.

    Google Scholar 

Free Air Gravity Anomaly from Satellite Altimetry

Magnetic Anomaly

  • Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., Thebault, E., Catalan, M., the WDMAM Task Force, the WDMAM Evaluators, the WDMAM Data Providers, & World Digital Magnetic Anomaly Map version 2.0. (2015). Map available at http://www.wdmam.org. The WDMAM Task Force: J. Dyment (chair), M. Catalan (co-chair), A. de Santis, M. Hamoudi, T. Ishihara, J. Korhonen, V. Lesur, T. Litvinova, J. Luis, B. Meyer, P. Milligan, M. Nakanishi, S. Okuma, M. Pilkington, M. Purucker, D. Ravat, E. Thébault. (alphabetical order), accepted at IUGG General Assembly of Prag in June 2015 as WDMAM version 2.0.

Crustal Age NOAA

Sediment Thickness NOAA

Deep Sea Drilling Programs

Global Modeling Software Platform

Exploration Concepts and Techniques

Gravity and Magnetic Inversion

Petroleum System Modeling

  • Ahlbrandt, T. S. (2001a). The Sirte Basin Province of Libya—Sirte-Zelten total petroleum system, USGS Bulletin 2202-F.

    Google Scholar 

  • Bell, R. E., Anderson, R., & Pratson, L. (1997). Gravity gradiometry resurfaces. The Leading Edge, 16(1), 55–58.

    Article  Google Scholar 

  • Gumati, Y. D., & Schamel, S. (1988). Thermal maturation history of the Sirt basin. Libya: Journal of Petroleum Geology, 11, 205–218.

    Google Scholar 

  • Gumati, Y. D., Kanes, W. H., & Schamel, S. (1996). An evaluation of the hydrocarbon potential of the sedimentary basins of Libya. Journal of Petroleum Geology, 19(1), 95–112.

    Article  Google Scholar 

  • Hallett, D. (2002). Petroleum geology of Libya. Elsevier.

    Google Scholar 

  • Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling. Springer.

    Google Scholar 

  • Hassan, H. S., & Kendall, C. C. G. (2014). Hydrocarbon provinces of Libya—A petroleum system study, chap. 4. In L. Marlow & L. Yose (Eds.), Petroleum systems of the Tethyan region: American Association of Petroleum Geologists Memoir No. 106 (pp. 101–141).

    Google Scholar 

  • Magoon, L. B., & Beaumont, E. A. (1999). Petroleum systems. In E. A. Beaumont & N. H. Foster (Eds.), Treatise of petroleum geology/handbook of petroleum geology: Exploring for oil and gas traps, Chapter 3, AAPG Special Volumes, 3-1-3-34.

    Google Scholar 

  • Rusk, D. C. (2001). Libya: Petroleum potential of the underexplored basin centers—A twenty-first century challenge. In M. W. Downey, J. C. Threet, & W. A. Morgan (Eds.), Petroleum provinces of the twenty-first century: AAPG Memoir 74 (pp. 429–452).

    Google Scholar 

  • Sandwell, D. T., & Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge sedimentation versus spreading rate. Journal of Geophysical Research, 114, B01411.

    Article  Google Scholar 

  • Veryaskin, A. V. (2018). Gravity, magnetic and electromagnetic gradiometry: Strategic technologies in the 21st century (IoP Concise Physics). Morgan & Claypool. https://doi.org/10.1088/978-1-6817-4700-2. ISBN 978-1-6817-4701-9.

  • Waples, D. W. (1994). Modeling of sedimentary basins and petroleum systems. In L. B. Magoon & W. G. Dow (Eds.), The petroleum system—From source to trap: AAPC Memoir 60 chapter 18 (pp. 307–322).

    Google Scholar 

Gulf of Suez Integration

  • Abd El-Naby, A. I. M., Ghanem, H., Boukhary, M., Abd El-Aal, M., Luning, S., & Kuss, J. (2010). Sequence-stratigraphic interpretation of structurally controlled deposition: Middle Miocene Kareem Formation southwestern Gulf of Suez, Egypt. GeoArabia, 15(3), 129–150.

    Article  Google Scholar 

  • Alsharhan, A. S., & Salah, M. G. (1995). Geology and hydrocarbon habitat in rift setting: Northern and central Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology, 43, 156–176.

    Google Scholar 

  • Bosworth, W., & McClay, K. (2001). Structural and stratigraphic evolution of the Gulf of Suez Rift, Egypt: A synthesis. In P. A. Ziegler, W. Cavazza, A. H. F. Robertson, & S. Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins (Mem. Natn. Hist. nat. 186, pp. 567–606), Paris. ISBN: 2-85653-528-3.

    Google Scholar 

  • Laake, A. (2011). Integration of surface and subsurface data—From satellites to reservoir. In EAGE/SEG Summer Research Workshop—Towards a Full Integration from Geosciences to Reservoir Simulation, Trieste, 2011. https://doi.org/10.3997/2214-4609.201402470

  • Laake, A. (2015). Structural interpretation in color—A new RGB processing application for seismic data. Interpretation, 3(1), SC1–SC8.

    Article  Google Scholar 

  • Laake, A., Sheneshen, M. S., Strobbia, C., Velasco, L., & Cutts, A. (2011c). Integration of surface/subsurface techniques reveals faults in Gulf of Suez oilfields. Petroleum Geoscience, 17, 165–179. https://doi.org/10.1144/1354-079310-014

    Article  Google Scholar 

  • Moustafa, A. R., & Khalil, S. M. (2017). Control of extensional transfer zones on syntectonic and posttectonic sedimentation: Implications for hydrocarbon exploration. Journal of the Geological Society, 174, 318–335. https://doi.org/10.1144/jgs2015-138

    Article  Google Scholar 

  • Strobbia, C., Laake, A., Vermeer, P. L., & Glushchenko, A. (2009a) Surface waves—Use them then lose them. In EAGE 71st Conference and Exhibition, 8–11 June 2009, Amsterdam, paper T 015.

    Google Scholar 

  • Strobbia, C., Vermeer, P., Glushchenko, A., & Laake, A. (2009b). Advances in surface-wave processing for nearsurface characterisation in land seismic. In 71st EAGE Conference & Exhibition 2009.

    Google Scholar 

  • Strobbia, C., Vermeer, P., Laake, A., Glushchenko, A., & Re, S. (2010). Surface waves: Processing, inversion and removal. First Break, 28, 85–91.

    Google Scholar 

  • Strobbia, C., Laake, A., Vermeer, P., & Glushchenko, A. (2011). Surface waves: Use them then lose them. Surface-wave analysis, inversion and attenuation in land reflection seismic surveying. Near Surface Geophysics, 9, 503–513. https://doi.org/10.3997/1873-0604.2011022

    Article  Google Scholar 

Radarsat Integration

  • Laake, A., & Strobbia, C. (2013b). Mapping Paleorivers from satellite radar and surface-wave velocities. In 75th EAGE Conference and Exhibition 2013, Workshop Paper G06.

    Google Scholar 

  • Redadaa, S., Boualleg, A., Merabtine, N., & Bensama, M. (2007). A study of P-band penetration capabilities: Application in sub-surface remote sensing. Romanian Journal of Physics, 52(5–7), 575–591.

    Google Scholar 

Estimating Impact of Volcanic Rocks

  • Abadi, A. M., van Wees, J.-D., van Dijk, P. M., & Cloetingh, S. A. P. L. (2008). Tectonics and subsidence evolution of the Sirt Basin, Libya. AAPG Bulletin, 92(8), 993–1027.

    Article  Google Scholar 

  • Ahlbrandt, T. S. (2001b). The Sirte Basin Province of Libya—Sirte-Zelten total petroleum system, USGS Bulletin 2202-F.

    Google Scholar 

  • Brugge, N. (n.d.). Crater-like structures in context with the large flood basalt field of Al-Haruj al-Aswad (Libya).

    Google Scholar 

  • Elshaafi, A., & Gudmundsson, A. (2016). Volcano-tectonics of the Al Haruj Volcanic Province, Central Libya. Journal of Volcanology and Geothermal Research, 325, 189–202. https://doi.org/10.1016/j.jvolgeores.2016.06.025

    Article  Google Scholar 

  • Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467(1), 30–42. https://doi.org/10.1016/j.epsl.2017.03.023

    Article  Google Scholar 

  • Luo, X., Gong, S., Jun, F. J., Wang, Z. H., & Qi, J. S. (2017). Effect of volcanic activity on hydrocarbon generation: Examples in Songliao, Qinshui, and Bohai Bay Basins in China. Journal of Natural Gas Science and Engineering, 38, 218–234. https://doi.org/10.1016/j.jngse.2016.12.022

    Article  Google Scholar 

  • Nuzzo, M., Elvert, M., Schimdt, M., Scholz, F., Reitz, A., Hinrichs, K.-U., & Hensen, C. (2012). Impact of hot fluid advection on hydrocarbon gas production and seepage in mud volcano sediments of thick Cenozoic deltas. Earth and Planetary Science Letters, 341–344, 139–157. https://doi.org/10.1016/j.epsl.2012.05.009

    Article  Google Scholar 

  • Peace, A., McCaffrey, K., Imber, J., Hobbs, R., van Hunen, J., & Gerdes, K. (2017). Quantifying the influence of sill intrusion on the thermal evolution of organic-rich sedimentary rocks in nonvolcanic passive margins: An example from ODP 210-1276, offshore Newfoundland. Canada, Basin Research, 29, 249–265. https://doi.org/10.1111/bre.12131

    Article  Google Scholar 

  • Rateau, R., Schofield, N., & Smith, M. (2013). The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience, 19, 259–272. https://doi.org/10.1144/petgeo2012-035

    Article  Google Scholar 

  • Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., Muirhead, D., Grove, C., Magee, C., Murray, J., Hole, M., Jackson, C. A.-L., & Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29, 41–63. https://doi.org/10.1111/bre.12164

    Article  Google Scholar 

  • Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C. H., Festoy, M., Galland, O., & Jerram, D. A. (2017). Effects of igneous intrusions on the petroleum system: A review. First Break, 35, 47–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laake, A. (2022). Frontier Exploration. In: Remote Sensing for Hydrocarbon Exploration. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-73319-3_9

Download citation

Publish with us

Policies and ethics