Skip to main content

Digital Relief Models

  • Chapter
  • First Online:
Remote Sensing for Hydrocarbon Exploration

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 2217 Accesses

Abstract

Digital relief models provide a digital elevation and/or bathymetry representation of the earth surface onto which data from remote sensing satellites can be projected to show these data in a virtual 3D rendering. Prior to satellite altimetry mapping, the only way to obtain such maps was from surface mapping or photogrammetry from stereo photos from aircraft for onshore and from onboard echolot measurements of the water depth. Remote sensing has changed the spatial coverage and the accuracy of digital relief models completely. We provide a summary on the different types of digital relief models, show their global coverage and list the characteristic parameters before showing applications from local to global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Digital Elevation Models General

  • Wilson, J. P., & Gallant, J. C. (2000). Chapter 1. In J. P. Wilson & J. C. Gallant (Eds.), Terrain analysis: Principles and applications (pp. 1–27). Wiley. ISBN 978-0-471-32188-0.

    Google Scholar 

ASTER GDEM V3

  • Abrams, M., & Crippen, R. (2019). ASTER GDEM V3 (ASTER global DEM), User Guide Version 1, Japan’s Ministry of Economy, Trade and Industry (METI). National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory/California Institute of Technology.

    Google Scholar 

  • ASTER GDEM Validation Team. (2009). ASTER global DEM validation, summary report. METI/ERSDAC, NASA/LPDAAC, USGS/EROS.

    Google Scholar 

  • Lee, C., Oh, J., Hong, C., & Youn, J. (2014). Automated generation of a digital elevation model over steep terrain in Antarctica from high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1186–1194.

    Article  Google Scholar 

  • Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Clouties, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M. Jr., Williamson, C., Bauer, G., Enos, J., Galen, K., Kramer, W., Becker, P., Doshi, A., D’Souza, C., Cummens, P., Laurier, F. & Bojesen, M. (2018). ArcticDEM, Harvard Dataverse, V1, https://doi.org/10.7910/DVN/OHHUKH, [accessed 15 Feb 2021]

ETOPO1

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, Marine Geology and Geophysics Division.

    Google Scholar 

GLOBE

  • Hastings, D. A., & Dunbar, P. K. (1999). Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation, Volume 1.0 (Key to geophysical records documentation (KGRD) 34). National Oceanic and Atmospheric Administration, National Geophysical Data Center.

    Google Scholar 

LiDAR DEM

  • Bartolini, L., Bordone, A., Fantoni, R., Ferri de Collibus, M., Fornetti, G., Moriconi, C., & Poggi, C. (2000). Development of laser range finder for the Antarctic Plateau. In Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, June 16–17, 2000 (pp. 148–156).

    Google Scholar 

  • Harsdorf, S., Tönebön, S., Reuter, R., & Wachowicz, B. (2000). Submersible Lidar for seafloor inspection. In Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, June 16–17, 2000.

    Google Scholar 

  • Heidemann, H. K. (2018). Lidar base specification, Chapter 4 of Section B, U.S. Geological Survey Standards Book 11, Collection and Delineation of Spatial Data, Version 1.3.

    Google Scholar 

  • Maslov, D. V., Fadeev, V. V., & Lyashenko, A. I. (2000). A shore-based Lidar for coastal seawater monitoring. In Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, June 16–17, 2000 (pp. 46–52).

    Google Scholar 

  • NOAA. (2012). Lidar 101: An introduction to Lidar technology, data and applications, revised. National Oceanic and Atmospheric Administration (NOAA), Coastal Service Center.

    Google Scholar 

  • Wozencraft, J. M., & Irish, J. (2000). Airborne Lidar surveys and regional sediment management. In Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, June 16–17, 2000 (pp. 28–38).

    Google Scholar 

Radar-Based Bathymetry

SRTM DEM

  • Berry, P. A. M., Garlick, J. D., & Smith, R. G. (2007). Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment, 106(1), 17–27. https://doi.org/10.1016/j.rse.2006.07.011

    Article  Google Scholar 

  • Farr, T. G., Rosen, P. A., Care, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), RG2004. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Lu, K.-Y., & Kiang, J.-F. (2013). Terrain height estimation using a stereo-SAR technique aided by a reference point. Progress in Electomagnetics Research M, 31, 1–11.

    Article  Google Scholar 

  • NASA. (2000). Shuttle Radar Tomography Mission, first shuttle flight of the new millennium. Shuttle Press Kit, NASA.

    Google Scholar 

  • Smith, B., & Sandwell, D. (2003). Accuracy and resolution of shuttle radar topography mission. Geophysical Research Letters, 30(9), 20.1–20.4.

    Article  Google Scholar 

Stereo Image-Based DEM

  • Raggam, H. (2006). Surface mapping using image triplets: Case studies and benefit assessment in comparison to stereo image processing. Photogrammetric Engineering and Remote Sensing, 72(5), 551–563.

    Article  Google Scholar 

TerrainBase

  • Row, L. W., Hastings, D. A., & Dunbar, P. K. (1995). TerrainBase worldwide digital terrain data—Documentation manual, CD-ROM Release 1.0. NOAA National Geophysical Data Center.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Laake .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laake, A. (2022). Digital Relief Models. In: Remote Sensing for Hydrocarbon Exploration. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-73319-3_4

Download citation

Publish with us

Policies and ethics