Skip to main content

Challenges and Advances in SLE Autoantibody Detection and Interpretation

  • Chapter
  • First Online:
Outcome Measures and Metrics in Systemic Lupus Erythematosus

Abstract

This chapter provides an overview of key autoantibodies used in the diagnosis and management of SLE. Issues addressed are the advantages to, but limitations of, ANA testing and what the key considerations are in ordering ANA tests and then interpreting the results.

There is a progressive move toward closing the seronegative gap in SLE, the use of solid-phase multi-analyte arrays with algorithmic analysis (SPMAAA), and harmonization of ANA testing.

As an approach to limiting morbidity and rising healthcare costs associated with SLE, the future of ANA testing should focus on making an accurate and actionable diagnosis of very early SLE. To achieve this goal, harmonization of autoantibody testing and machine learning analytics will be important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements: the “tart” cells and the “L.E.” cell. Mayo Clin Proc. 1948;23:25–8.

    CAS  Google Scholar 

  2. Benedek TC. History of lupus. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus erythematosus and related conditions. Philadelphia: Elsevier; 2019. p. 1–14.

    Google Scholar 

  3. Mahler M, Meroni PL, Bossuyt X, Fritzler MJ. Current concepts and future directions for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. J Immunol Res. 2014;2014:315179.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fritzler MJ. Widening spectrum and gaps in autoantibody testing for systemic autoimmune diseases. J Rheum Res. 2018;1:10–8.

    Google Scholar 

  5. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus. Semin Arthritis Rheum. 2004;34:501–37.

    Article  CAS  PubMed  Google Scholar 

  6. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 2014;14:75–9.

    Article  CAS  Google Scholar 

  7. Fredi M, Cavazzana I, Quinzanini M, Taraborelli M, Cartella S, Tincani A, et al. Rare autoantibodies to cellular antigens in systemic lupus erythematosus. Lupus. 2014;23:672–7.

    Article  CAS  PubMed  Google Scholar 

  8. Choi MY, Clarke AE, St Pierre Y, Hanly JG, Urowitz MB, Romero-Diaz J, et al. Antinuclear antibody-negative systemic lupus erythematosus in an international inception cohort. Arthritis Care Res (Hoboken). 2018;71:893–902.

    Article  CAS  Google Scholar 

  9. Fritzler MJ, Martinez-Prat L, Choi MY, Mahler M. The utilization of autoantibodies in approaches to precision health. Front Immunol. 2018;9:2682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fritzler MJ, Fritzler ML. Microbead-based technologies in diagnostic autoantibody detection. Expert Opin Med Diag. 2009;3:81–9.

    Article  CAS  Google Scholar 

  11. Olsen NJ, Choi MY, Fritzler MJ. Emerging technologies in autoantibody testing for rheumatic diseases. Arthritis Res Ther. 2017;19:172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis. 2010;69:1420–2.

    Article  CAS  PubMed  Google Scholar 

  13. Hammonds T. Academic-pharma drug discovery alliances: seeking ways to eliminate the valley of death. Future Med Chem. 2015;7:1891–9.

    Article  CAS  PubMed  Google Scholar 

  14. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78:1151–9.

    Article  PubMed  Google Scholar 

  15. Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, et al. Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. pediatric diabetes population with monogenic diabetes. Diabetes Care. 2016;39(11):1879–88.

    Article  CAS  PubMed  Google Scholar 

  16. Willems P, De LE, Westhovens R, Vanderschueren S, Blockmans D, Bossuyt X. Antinuclear antibody as entry criterion for classification of systemic lupus erythematosus: pitfalls and opportunities. Ann Rheum Dis. 2018;78(8):e76.

    Article  PubMed  Google Scholar 

  17. Colon-Franco JM, Bossuyt PMM, Algeciras-Schimnich A, Bird C, Engstrom-Melnyk J, Fleisher M, et al. Current and emerging multianalyte assays with algorithmic analyses-are laboratories ready for clinical adoption? Clin Chem. 2018;64:885–91.

    Article  CAS  PubMed  Google Scholar 

  18. Meroni PL, Chan EK, Damoiseaux J, Andrade LEC, Bossuyt X, Conrad K, et al. Unending story of the indirect immunofluorescence assay on HEp-2 cells: old problems and new solutions? Ann Rheum Dis. 2018;78:e46.

    Article  PubMed  Google Scholar 

  19. Perez D, Gilburd B, Azoulay D, Shovman O, Bizzaro N, Shoenfeld Y. Antinuclear antibodies: is the indirect immunofluorescence still the gold standard or should be replaced by solid phase assays? Autoimmun Rev. 2018;17:548–52.

    Article  PubMed  Google Scholar 

  20. Bizzaro N, Brusca I, Previtali G, Alessio MG, Daves M, Platzgummer S, et al. The association of solid-phase assays to immunofluorescence increases the diagnostic accuracy for ANA screening in patients with autoimmune rheumatic diseases. Autoimmun Rev. 2018;17:541–7.

    Article  CAS  PubMed  Google Scholar 

  21. Pisetsky DS. Antinuclear antibody testing - misunderstood or misbegotten? Nat Rev Rheumatol. 2017;13:495–502.

    Article  CAS  PubMed  Google Scholar 

  22. Pisetsky DS, Lipsky PE. The role of ANA determinations in classification criteria for SLE. Arthritis Care Res (Hoboken). 2018;71(5):696.

    Article  Google Scholar 

  23. Jacobs JFM, Bossuyt X. Standardization and harmonization of autoimmune diagnostics. Clin Chem Lab Med. 2018;56:1563–7.

    Article  CAS  PubMed  Google Scholar 

  24. Perez D, Gilburd B, Cabrera-Marante O, Martinez-Flores JA, Serrano M, Naranjo L, et al. Predictive autoimmunity using autoantibodies: screening for anti-nuclear antibodies. Clin Chem Lab Med. 2018;56:1771–7.

    Article  CAS  PubMed  Google Scholar 

  25. Barr SG, Zonana-Nacach A, Magder LS, Petri M. Patterns of disease activity in systemic lupus erythematosus. Arthritis Rheum. 1999;42:2682–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wiik AS. Anti-nuclear autoantibodies: clinical utility for diagnosis, prognosis, monitoring, and planning of treatment strategy in systemic immunoinflammatory diseases. Scand J Rheumatol. 2005;34:260–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sjowall C, Bentow C, Aure MA, Mahler M. Two-parametric immunological score development for assessing renal involvement and disease activity in systemic lupus erythematosus. J Immunol Res. 2018;2018:1294680.

    Article  PubMed  CAS  Google Scholar 

  28. Beastall GH, Brouwer N, Quiroga S, Myers GL. Traceability in laboratory medicine: a global driver for accurate results for patient care. Clin Chem Lab Med. 2017;55:1100–8.

    Article  CAS  PubMed  Google Scholar 

  29. Young IS. The enduring importance and challenge of commutability. Clin Chem. 2018;64:421–3.

    Article  CAS  PubMed  Google Scholar 

  30. Paxton A. New momentum in harmonizing lab results. CAP Today. 2018;32:1–34.

    Google Scholar 

  31. Agmon-Levin N, Damoiseaux J, Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014;73:17–23.

    Article  CAS  PubMed  Google Scholar 

  32. Damoiseaux J, von Muhlen CA, Garcia-de la Torre I, Carballo OG, de Melo CW, Francescantonio PL, et al. International consensus on ANA patterns (ICAP): the bumpy road towards a consensus on reporting ANA results. Auto Immun Highlights. 2016;7:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fritzler MJ, Wiik A, Fritzler ML, Barr SG. The use and abuse of commercial kits used to detect autoantibodies. Arthritis Res Ther. 2003;5:192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bossuyt X, Louche C, Wiik A. Standardisation in clinical laboratory medicine: an ethical reflection. Ann Rheum Dis. 2008;67:1061–3.

    Article  PubMed  Google Scholar 

  35. Van den Bremt S, Schouwers S, Van BM, Van HL. ANA IIF automation: moving towards harmonization? Results of a multicenter study. J Immunol Res. 2017;2017:6038137.

    PubMed  PubMed Central  Google Scholar 

  36. Claessens J, Belmondo T, De LE, Westhovens R, Poesen K, Hue S, et al. Solid phase assays versus automated indirect immunofluorescence for detection of antinuclear antibodies. Autoimmun Rev. 2018;17:533–40.

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Lee W, Kim GT, Kim HS, Ock S, Kim IS, et al. Diagnostic utility of automated indirect immunofluorescence compared to manual indirect immunofluorescence for anti-nuclear antibodies in patients with systemic rheumatic diseases: a systematic review and meta-analysis. Semin Arthritis Rheum. 2018;48(4):728–35.

    Article  PubMed  Google Scholar 

  38. Bossuyt X, Hendrickx A, Frans J. Antinuclear antibody titer and antibodies to extractable nuclear antigens. Arthritis Rheum. 2005;53:987–8.

    Article  PubMed  Google Scholar 

  39. Oyaert M, Bossuyt X, Ravelingien I, Van HL. Added value of indirect immunofluorescence intensity of automated antinuclear antibody testing in a secondary hospital setting. Clin Chem Lab Med. 2016;54:e63–6.

    Article  CAS  PubMed  Google Scholar 

  40. Chan EK, Damoiseaux J, de Melo CW, Carballo OG, Conrad K, Francescantonio PL, et al. Report on the Second International Consensus on ANA Pattern (ICAP) workshop in Dresden 2015. Lupus. 2016;25:797–804.

    Article  CAS  PubMed  Google Scholar 

  41. Meroni PL, Borghi MO. Diagnostic laboratory tests for systemic autoimmune rheumatic diseases: unmet needs towards harmonization. Clin Chem Lab Med. 2018;56:1743–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bossuyt X, Fieuws S. Detection of antinuclear antibodies: added value of solid phase assay? Ann Rheum Dis. 2014;73:e10.

    Article  PubMed  Google Scholar 

  43. Jeong S, Hwang H, Roh J, Shim JE, Kim J, Kim GT, et al. Evaluation of an automated screening assay, compared to indirect immunofluorescence, an extractable nuclear antigen assay, and a line immunoassay in a large cohort of Asian patients with antinuclear antibody-associated rheumatoid diseases: a multicenter retrospective study. J Immunol Res. 2018;2018:9094217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Craft J, Hardin JA. Linked sets of antinuclear antibodies: what do they mean? J Rheumatol. 1987;14(Suppl):106–9.

    Google Scholar 

  45. Yang J, Xu Z, Sui M, Han J, Sun L, Jia X, et al. Co-positivity for anti-dsDNA, -nucleosome and -histone antibodies in lupus nephritis is indicative of high serum levels and severe nephropathy. PLoS One. 2015;10:e0140441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Menor AR, Jurado RA, Rodriguez Gutierrez FJ, Solis DR, Cardiel MH, Salaberri Maestrojuan JJ. Association of anti-Ro52, anti-Ro60 and anti-La antibodies with diagnostic, clinical and laboratory features in a referral hospital in Jerez, Spain. Reumatol Clin. 2015;12(5):256–62.

    Article  Google Scholar 

  47. Mummert E, Fritzler MJ, Sjowall C, Bentow C, Mahler M. The clinical utility of anti-double-stranded DNA antibodies and the challenges of their determination. J Immunol Methods. 2018;459:11–9.

    Article  CAS  PubMed  Google Scholar 

  48. Pisetsky DS. Anti-DNA antibodies - quintessential biomarkers of SLE. Nat Rev Rheumatol. 2016;12:102–10.

    Article  CAS  PubMed  Google Scholar 

  49. Yung S, Chan TM. Mechanisms of kidney injury in lupus nephritis – the role of anti-dsDNA antibodies. Front Immunol. 2015;6:475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Andrejevic S, Jeremic I, Sefik-Bukilica M, Nikolic M, Stojimirovic B, Bonaci-Nikolic B. Immunoserological parameters in SLE: high-avidity anti-dsDNA detected by ELISA are the most closely associated with the disease activity. Clin Rheumatol. 2013;32:1619–26.

    Article  PubMed  Google Scholar 

  51. Gomez-Puerta JA, Burlingame RW, Cervera R. Anti-chromatin (anti-nucleosome) antibodies: Diagnostic and clinical value. Autoimmun Rev. 2008;7:606–11.

    Article  CAS  PubMed  Google Scholar 

  52. Van Bavel CC, Dieker JW, Kroeze Y, Tamboer WP, Voll R, Muller S, et al. Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis. 2010;70:201–7.

    Article  PubMed  CAS  Google Scholar 

  53. Van Bavel CC, Dieker J, Muller S, Briand JP, Monestier M, Berden JH, et al. Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol Immunol. 2009;47:511–6.

    Article  PubMed  CAS  Google Scholar 

  54. Dwivedi N, Neeli I, Schall N, Wan H, Desiderio DM, Csernok E, et al. Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity. FASEB J. 2014;28:2840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vaglio A, Grayson PC, Fenaroli P, Gianfreda D, Boccaletti V, Ghiggeri GM, et al. Drug-induced lupus: traditional and new concepts. Autoimmun Rev. 2018;17:912–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fritzler MJ, Tan EM. Antibodies to histones in drug-induced and idiopathic lupus erythematosus. J Clin Invest. 1978;62:560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mehra S, Fritzler MJ. The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J Immunol Res. 2014;2014:368274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Stinton LM, Barr SG, Tibbles LA, Yilmaz S, Sar A, Benedikttson H, et al. Autoantibodies in lupus nephritis patients requiring renal transplantation. Lupus. 2007;16:394–400.

    Article  CAS  PubMed  Google Scholar 

  59. Abraham SJ, Rojas-Serrano J, Cabiedes J, Alcocer-Varela J. Antinucleosome antibodies may help predict development of systemic lupus erythematosus in patients with primary antiphospholipid syndrome. Lupus. 2004;13:177–81.

    Article  Google Scholar 

  60. Cervera R, Vinas O, Ramos-Casals M, Font J, Garcia-Carrasco M, Siso A, et al. Anti-chromatin antibodies in systemic lupus erythematosus: a useful marker for lupus nephropathy. Ann Rheum Dis. 2003;62:431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kiss E, Lakos G, Szegedi G, Poor G, Szodoray P. Anti-nucleosome antibody, a reliable indicator for lupus nephritis. Autoimmunity. 2009;42:393–8.

    Article  CAS  PubMed  Google Scholar 

  62. Rekvig OP, van der Vlag J, Seredkina N. Anti-nucleosome antibodies – a critical reflection on their specificities and diagnostic impact. Arthritis Rheumatol. 2014;65:1061–9.

    Article  CAS  Google Scholar 

  63. Schaper F, De Leeuw K, Horst GT, Maas F, Bootsma H, Heeringa P, Limburg PC, Westra J. Autoantibodies to Box A of high mobility group box-1 in Systemic Lupus Erythematosus. Clin Exp Immunol. 2017;188:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    Article  CAS  PubMed  Google Scholar 

  65. Magna M, Pisetsky DS. The role of cell death in the pathogenesis of SLE: is pyroptosis the missing link? Scand J Immunol. 2015;82:218–24.

    Article  CAS  PubMed  Google Scholar 

  66. Cully M. Connective tissue diseases: HMGB1 helps elicit anti-dsDNA antibody production in SLE. Nat Rev Rheumatol. 2013;9:321.

    Article  PubMed  Google Scholar 

  67. Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther. 2011;13:R71.

    Article  PubMed  PubMed Central  Google Scholar 

  68. de Souza AW, Westra J, Bijzet J, Limburg PC, Stegeman CA, Bijl M, Kallenberg CG. Is serum HMGB1 a biomarker in ANCA-associated vasculitis? Arthritis Res Ther. 2013;15:R104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Santoro P, De Andrea M, Migliaretti G, Trapani C, Landolfo S, Gariglio M. High prevalence of autoantibodies against the nuclear high mobility group (HMG) protein SSRP1 in sera from patients with SLE, but not other rheumatic diseases. J Rheumatol. 2002;29:90–3.

    CAS  PubMed  Google Scholar 

  70. Conrad K, Rober N, Andrade LE, Mahler M. The clinical relevance of anti-DFS70 autoantibodies. Clin Rev Allergy Immunol. 2017;52:202–16.

    Article  CAS  PubMed  Google Scholar 

  71. Mahler M, Meroni PL, Andrade LE, Khamashta M, Bizzaro N, Casiano CA, et al. Towards a better understanding of the clinical association of anti-DFS70 autoantibodies. Autoimmun Rev. 2016;15:198–201.

    Article  CAS  PubMed  Google Scholar 

  72. Ganapathy V, Casiano CA. Autoimmunity to the nuclear autoantigen DFS70 (LEDGF): what exactly are the autoantibodies trying to tell us? Arthritis Rheum. 2004;50:684–8.

    Article  PubMed  Google Scholar 

  73. Ochs RL, Mahler M, Basu A, Rios-Colon L, Sanchez TW, Andrade LE, et al. The significance of autoantibodies to DFS70/LEDGFp75 in health and disease: integrating basic science with clinical understanding. Clin Exp Med. 2016;16:273–93.

    Article  CAS  PubMed  Google Scholar 

  74. Mariz HA, Sato EI, Barbosa SH, Rodrigues SH, Dellavance A, Andrade LE. Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum. 2011;63:191–200.

    Article  CAS  PubMed  Google Scholar 

  75. Choi MY, Clarke AE, St PY, Hanly JG, Urowitz MB, Romero-Diaz J, et al. The prevalence and determinants of anti-DFS70 autoantibodies in an international inception cohort of systemic lupus erythematosus patients. Lupus. 2017;26:1051–9.

    Article  CAS  PubMed  Google Scholar 

  76. Albesa R, Sachs UJ, Infantino M, Manfredi M, Benucci M, Baus Y, et al. Increased prevalence of anti-DFS70 antibodies in young females: experience from large international multi-center study on blood donors. Clin Chem Lab Med. 2018;57(7):999–1005.

    Article  CAS  Google Scholar 

  77. Riemekasten G, Humrich JY, Hiepe F. Antibodies against the extractable nulcear antigens RNP, Sm, R0/SSA, and La/SSB. In: Wallace DJ, Hahn BH, editors. Dubois’ systemic lupus erythematosus and related syndromes. Philadelphia: Elsevier Inc.; 2019. p. 366–71.

    Chapter  Google Scholar 

  78. Craft J. Antibodies to snRNPs in systemic lupus erythematosus. Rheum Dis Clin N A. 1992;18:311–35.

    Article  CAS  Google Scholar 

  79. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  CAS  PubMed  Google Scholar 

  80. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fritzler MJ. Challenges to the use of autoantibodies as predictors of disease onset, diagnosis and outcomes. Autoimmun Rev. 2008;7:616–20.

    Article  CAS  PubMed  Google Scholar 

  82. Sharp GC, Irvin W, Tan EM, Gould G, Holman HR. Mixed connective tissue disease - an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am J Med. 1972;52:148–59.

    Article  CAS  PubMed  Google Scholar 

  83. Sakata K, Matsumoto Y, Satoh M, Oouchi A, Nagakura H, Koito K, et al. Clinical studies of immunohistochemical staining of DNA-dependent protein kinase in oropharyngeal and hypopharyngeal carcinomas. Radiat Med. 2001;19:93–7.

    CAS  PubMed  Google Scholar 

  84. Belizna C, Henrion D, Beucher A, Lavigne C, Ghaali A, Levesque H. Anti-Ku antibodies: clinical, genetic and diagnostic insights. Autoimmun Rev. 2010;9:691–4.

    Article  CAS  PubMed  Google Scholar 

  85. Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest. 1981;68:611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reeves WH. Use of monoclonal antibodies for the characterization of novel DNA-binding proteins recognized by human autoimmune sera. J Exp Med. 1985;161:18–39.

    Article  CAS  PubMed  Google Scholar 

  87. Wang J, Satoh M, Kabir F, Shaw M, Domingo MA, Mansoor R, et al. Increased prevalence of autoantibodies to ku antigen in African American versus white patients with systemic lupus erythematosus. Arthritis Rheum. 2001;44:2367–70.

    Article  CAS  PubMed  Google Scholar 

  88. Hoa S, Hudson M, Troyanov Y, Proudman S, Walker J, Stevens W, et al. Single-specificity anti-Ku antibodies in an international cohort of 2140 systemic sclerosis subjects: clinical associations. Medicine (Baltimore). 2016;95:e4713.

    Article  CAS  Google Scholar 

  89. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, et al. Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Routsias JG, Tzioufas AG. Autoimmune response and target autoantigens in Sjogren’s syndrome. Eur J Clin Investig. 2010;40:1026–36.

    Article  CAS  Google Scholar 

  91. Izmirly PM, Halushka MK, Rosenberg AZ, Whelton S, Rais-Bahrami K, Nath DS, et al. Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP. Autoimmun Rev. 2017;16:980–3.

    Article  CAS  PubMed  Google Scholar 

  92. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349:1526–33.

    Article  CAS  PubMed  Google Scholar 

  93. Grela P, Sawa-Makarska J, Gordiyenko Y, Robinson CV, Grankowski N, Tchorzewski M. Structural properties of the human acidic ribosomal P proteins forming the P1-P2 heterocomplex. J Biochem. 2008;143:169–77.

    Article  CAS  PubMed  Google Scholar 

  94. Lin A, Wittmann-Liebold B, McNally J, Wool IG. The primary structure of the acidic phosphoprotein P2 from rat liver 60 S ribosomal subunits. Comparison with ribosomal ‘A’ proteins from other species. J Biol Chem. 1982;257:9189–97.

    Article  CAS  PubMed  Google Scholar 

  95. Francoeur AM, Peebles CL, Heckman KJ, Lee JC, Tan EM. Identification of ribosomal protein autoantigens. J Immunol. 1985;135:2378–84.

    Article  CAS  PubMed  Google Scholar 

  96. Pasoto SG, Viana VS, Bonfa E. The clinical utility of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Expert Rev Clin Immunol. 2014;10:1493–503.

    Article  CAS  PubMed  Google Scholar 

  97. Toubi E, Shoenfeld Y. Clinical and biological aspects of anti-P-ribosomal protein autoantibodies. Autoimmun Rev. 2007;6:119–25.

    Article  CAS  PubMed  Google Scholar 

  98. Mahler M, Agmon-Levin N, van Liempt M, Shoenfeld Y, Waka A, Hiepe F, Swart A, Gürtler I, Fritzler MJ. Multi-center evaluation of autoantibodies to the major ribosomal P C22 epitope. Rheumatol Int. 2012;32:691–8.

    Article  CAS  PubMed  Google Scholar 

  99. Zandman-Goddard G, Shoenfeld Y. Antiribsomal P antibodies. In: Shoenfeld Y, Meroni PL, Gershwin ME, editors. Autoantibodies. Amsterdam: Elsevier BV; 2014. p. 225–31.

    Chapter  Google Scholar 

  100. Karassa FB, Afeltra A, Ambrozic A, Chang DM, De KF, Doria A, et al. Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: an international meta-analysis. Arthritis Rheum. 2006;54:312–24.

    Article  CAS  PubMed  Google Scholar 

  101. Hanly JG, Urowitz MB, Siannis F, Farewell V, Gordon C, Bae SC, et al. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study. Arthritis Rheum. 2008;58:843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mahler M, Kessenbrock K, Raats J, Williams RCJr, Fritzler MJ. Characterization of the human autoimmune response to the major C-terminal epitope of the ribosomal P proteins. J Mol Med. 2003;81:194–204.

    Article  CAS  PubMed  Google Scholar 

  103. Lin JL, Dubljevic V, Fritzler MJ, Toh BH. Major immunoreactive domains of human ribosomal P proteins lie N-terminal to a homologous C-22 sequence: application to a novel ELISA for systemic lupus erythematosus. Clin Exp Immunol. 2005;141:155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mahler M, Kessenbrock K, Raats J, Fritzler MJ. Technical and clinical evaluation of anti-ribosomal P protein immunoassays. J Clin Lab Anal. 2004;18:215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mahler M, Ngo J, Schulte-Pelkum J, Luettich T, Fritzler MJ. Limited reliability of the indirect immunofluorescence technique for the detection of anti-Rib-P antibodies. Arthritis Res Ther. 2008;10:R131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Reichlin M. Serological correlations with nephritis in systemic lupus erythematosus. Clin Immunol. 2005;117:12–4.

    Article  CAS  PubMed  Google Scholar 

  107. Gerli R, Caponi L. Anti-ribosomal P protein antibodies. Autoimmunity. 2005;38:85–92.

    Article  CAS  PubMed  Google Scholar 

  108. Fritzler MJ, Hanson C, Miller J, Eystathioy T. Specificity of autoantibodies to SS-A/Ro on a transfected and overexpressed human 60 kDa Ro autoantigen substrate. J Clin Lab Anal. 2002;16:103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Malik S, Bruner GR, Williams-Weese C, Feo L, Scofield RH, Reichlin M, et al. Presence of anti-La autoantibody is associated with a lower risk of nephritis and seizures in lupus patients. Lupus. 2007;16:863–6.

    Article  CAS  PubMed  Google Scholar 

  110. Yoshimi R, Ishigatsubo Y, Ozato K. Autoantigen TRIM21/Ro52 as a possible target for treatment of systemic lupus erythematosus. Int J Rheumatol. 2012;2012:718237.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bolland S, Garcia-Sastre A. Vicious circle: systemic autoreactivity in Ro52/TRIM21-deficient mice. J Exp Med. 2009;206:1647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kyriakidis NC, Kapsogeorgou EK, Gourzi VC, Konsta OD, Baltatzis GE, Tzioufas AG. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin Exp Immunol. 2014;178:548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schulte-Pelkum J, Fritzler M, Mahler M. Latest update on the Ro/SS-A autoantibody system. Autoimmun Rev. 2009;8:632–7.

    Article  CAS  PubMed  Google Scholar 

  114. Dugar M, Cox S, Limaye V, Gordon TP, Roberts-Thomson PJ. Diagnostic utility of anti-Ro52 detection in systemic autoimmunity. Postgrad Med J. 2010;86:79–82.

    Article  PubMed  Google Scholar 

  115. Hudson M, Pope J, Mahler M, Tatibouet S, Steele R, Baron M, et al. Clinical significance of antibodies to Ro52/TRIM21 in systemic sclerosis. Arthritis Res Ther. 2012;14:R50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Retamozo S, Akasbi M, Brito-Zeron P, Bosch X, Bove A, Perez-De-Lis M, et al. Anti-Ro52 antibody testing influences the classification and clinical characterisation of primary Sjogren’s syndrome. Clin Exp Rheumatol. 2012;30:686–92.

    PubMed  Google Scholar 

  117. Lu R, Robertson JM, Bruner BF, Guthridge JM, Neas BR, Nath SK, et al. Multiple autoantibodies display association with lymphopenia, proteinuria, and cellular casts in a large, ethnically diverse SLE patient cohort. Autoimmune Dis. 2012;2012:819634.

    PubMed  PubMed Central  Google Scholar 

  118. Go EJL, O’Neil KM. The catastrophic antiphospholipid syndrome in children. Curr Opin Rheumatol. 2017;29(5):516–22.

    Article  CAS  PubMed  Google Scholar 

  119. Mahler M, Miyachi K, Peebles C, Fritzler MJ. The clinical significance of autoantibodies to the proliferating cell nuclear antigen (PCNA). Autoimmun Rev. 2012;11:771–5.

    Article  CAS  PubMed  Google Scholar 

  120. Vermeersch P, De Beeck KO, Lauwerys BR, Van den Bergh K, Develter M, Marien G, et al. Antinuclear antibodies directed against proliferating cell nuclear antigen are not specifically associated with systemic lupus erythematosus. Ann Rheum Dis. 2009;68:1791–3.

    Article  CAS  PubMed  Google Scholar 

  121. Mahler M, Silverman ED, Fritzler M. Novel diagnostic and clinical aspects of anti-PCNA antibodies detected by novel detection methods. Lupus. 2010;19:1527–33.

    Article  CAS  PubMed  Google Scholar 

  122. Beurskens FJ, van Schaarenburg RA, Trouw LA. C1q, antibodies and anti-C1q autoantibodies. Mol Immunol. 2015;68:6–13.

    Article  CAS  PubMed  Google Scholar 

  123. Trouw LA, Daha MR. Role of anti-C1q autoantibodies in the pathogenesis of lupus nephritis. Expert Opin Biol Ther. 2005;5:243–51.

    Article  CAS  PubMed  Google Scholar 

  124. de Leeuw K, Kallenberg CGM. Antibodies against C1q antibodies. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus erythematosus and related syndromes. Philadelpha: Elsevier Inc.; 2019. p. 372–3.

    Chapter  Google Scholar 

  125. Vitre B, Gudimchuk N, Borda R, Kim Y, Heuser JE, Cleveland DW, et al. Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E. Mol Biol Cell. 2014;25:2272–81.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Matrat A, Veysseyre-Balter C, Trolliet P, Villar E, Dijoud F, Bienvenu J, et al. Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: predictive value for renal flares. Lupus. 2011;20:28–34.

    Article  CAS  PubMed  Google Scholar 

  127. Eggleton P, Ukoumunne OC, Cottrell I, Khan A, Maqsood S, Thornes J, et al. Autoantibodies against C1q as a diagnostic measure of lupus nephritis: systematic review and meta-analysis. J Clin Cell Immunol. 2014;5:210.

    PubMed  PubMed Central  Google Scholar 

  128. Giles I, Cohen H, Ioannou Y. Pathogenesis of antiphospholipid antibody syndrome. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus erythematosus and related syndromes. Philadelphia: Elsevier Inc.; 2019. p. 324–37.

    Chapter  Google Scholar 

  129. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  130. Meroni PL, Shoenfeld Y. Predictive, protective, orphan autoantibodies: the example of the anti-phospholipid antibodies. Autoimmun Rev. 2008;7:585–7.

    Article  CAS  PubMed  Google Scholar 

  131. Nash MJ, Camilleri RS, Kunka S, Mackie IJ, Machin SJ, Cohen H. The anticardiolipin assay is required for sensitive screening for antiphospholipid antibodies. J Thromb Haemost. 2004;2:1077–81.

    Article  CAS  PubMed  Google Scholar 

  132. Nojima J, Kuratsune H, Suehisa E, Futsukaichi Y, Yamanishi H, Machii T, et al. Association between the prevalence of antibodies to β2-glycoprotein I, prothrombin, protein C, protein S, and annexin V in patients with systemic lupus erythematosus and thrombotic and thrombocytopenic complications. Clin Chem. 2001;47:1008–15.

    Article  CAS  PubMed  Google Scholar 

  133. Obermoser G, Bitterlich W, Kunz F, Sepp NT. Clinical significance of anticardiolipin and anti-beta2-glycoprotein I antibodies. Int Arch Allergy Immunol. 2004;135:148–53.

    Article  CAS  PubMed  Google Scholar 

  134. Andreoli L, Chighizola CB, Nalli C, Gerosa M, Borghi MO, Pregnolato F, et al. Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against beta2-glycoprotein i domain 1 and domain 4/5: ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome. Arthritis Rheumatol. 2015;67:2196–204.

    Google Scholar 

  135. Mahler M, Norman GL, Meroni PL, Khamashta M. Autoantibodies to domain 1 of beta 2 glycoprotein 1: a promising candidate biomarker for risk management in antiphospholipid syndrome. Autoimmun Rev. 2012;12:313–7.

    Article  CAS  PubMed  Google Scholar 

  136. Cousins L, Pericleous C, Khamashta M, Bertolaccini ML, Ioannou Y, Giles I, et al. Antibodies to domain I of beta-2-glycoprotein I and IgA antiphospholipid antibodies in patients with ‘seronegative’ antiphospholipid syndrome. Ann Rheum Dis. 2015;74:317–9.

    Article  CAS  PubMed  Google Scholar 

  137. Chighizola CB, Pregnolato F, Andreoli L, Bodio C, Cesana L, Comerio C, et al. Beyond thrombosis: anti-beta2GPI domain 1 antibodies identify late pregnancy morbidity in anti-phospholipid syndrome. J Autoimmun. 2018;90:76–83.

    Article  CAS  PubMed  Google Scholar 

  138. Chayoua W, Kelchtermans H, Moore GW, Musial J, Wahl D, et al. Identification of high thrombotic risk triple-positive antiphospholipid syndrome patients is dependent on anti-cardiolipin and anti-beta2glycoprotein I antibody detection assays. J Thromb Haemost. 2018;16:2016–23.

    Article  CAS  PubMed  Google Scholar 

  139. Zohoury N, Bertolaccini ML, Rodriguez-Garcia JL, Shums Z, Ateka-Barrutia O, Sorice M, et al. Closing the serological gap in the antiphospholipid syndrome: the value of “non-criteria” antiphospholipid antibodies. J Rheumatol. 2017;44:1597–602.

    Article  CAS  PubMed  Google Scholar 

  140. Sciascia S, Khamashta MA, Bertolaccini ML. New tests to detect antiphospholipid antibodies: antiprothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies. Curr Rheumatol Rep. 2014;16:415.

    Article  PubMed  CAS  Google Scholar 

  141. Zhang S, Wu Z, Zhang W, Zhao J, Norman GL, Zeng X, et al. Antibodies to phosphatidylserine/prothrombin (aPS/PT) enhanced the diagnostic performance in Chinese patients with antiphospholipid syndrome. Clin Chem Lab Med. 2018;56:939–46.

    Article  CAS  PubMed  Google Scholar 

  142. La Rosa L, Covini G, Galperin C, Catelli L, Del Papa N, Reina G, et al. Anti-mitochondrial M5 type antibody represents one of the serological markers for anti-phospholipid syndrome distinct from anti-cardiolipin and anti-beta2-glycoprotein I antibodies. Clin Exp Immunol. 1998;112:144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Meroni PL, Harris EN, Brucato A, Tincani A, Barcellini W, Vismara A, et al. Anti-mitochondrial type M5 and anti-cardiolipin antibodies in autoimmune disorders: studies on their association and cross-reactivity. Clin Exp Immunol. 1987;67:484–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sciascia S, Sanna G, Murru V, Khamashta MA, Bertolaccini ML. Validation of a commercially available kit to detect anti-phosphatidylserine/prothrombin antibodies in a cohort of systemic lupus erythematosus patients. Thromb Res. 2014;133:451–4.

    Article  CAS  PubMed  Google Scholar 

  145. Amengual O, Forastiero R, Sugiura-Ogasawara M, Otomo K, Oku K, Favas C, et al. Evaluation of phosphatidylserine-dependent antiprothrombin antibody testing for the diagnosis of antiphospholipid syndrome: results of an international multicentre study. Lupus. 2017;26:266–76.

    Article  CAS  PubMed  Google Scholar 

  146. Shi H, Zheng H, Yin YF, Hu QY, Teng JL, Sun Y, et al. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential diagnostic markers and risk predictors of venous thrombosis and obstetric complications in antiphospholipid syndrome. Clin Chem Lab Med. 2018;56:614–24.

    Article  CAS  PubMed  Google Scholar 

  147. Bertolaccini ML, Sciascia S, Murru V, Garcia-Fernandez C, Sanna G, Khamashta MA. Prevalence of antibodies to prothrombin in solid phase (aPT) and to phosphatidylserine-prothrombin complex (aPS/PT) in patients with and without lupus anticoagulant. Thromb Haemost. 2013;109:207–13.

    Article  CAS  PubMed  Google Scholar 

  148. Stinton LM, Eystathioy T, Selak S, Chan EKL, Fritzler MJ. Autoantibodies to protein transport and messenger RNA processing pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes and GW Bodies. Clin Immunol. 2004;110:30–44.

    Article  CAS  PubMed  Google Scholar 

  149. Fritzler MJ, Mahler M. Redefining systemic lupus erythematosus — SMAARTT proteomics. Nat Rev Rheumatol. 2018;14:451–2.

    Article  CAS  PubMed  Google Scholar 

  150. Choi MY, Barber MR, Barber CE, Clarke AE, Fritzler MJ. Preventing the development of SLE: identifying risk factors and proposing pathways for clinical care. Lupus. 2016;25:838–49.

    Article  CAS  PubMed  Google Scholar 

  151. Fritzler MJ. The antinuclear antibody (ANA) test: last or lasting gasp? Arthritis Rheum. 2011;63:19–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Fritzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, M.Y., Fritzler, M.J. (2021). Challenges and Advances in SLE Autoantibody Detection and Interpretation. In: Touma, Z. (eds) Outcome Measures and Metrics in Systemic Lupus Erythematosus. Springer, Cham. https://doi.org/10.1007/978-3-030-73303-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73303-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73302-5

  • Online ISBN: 978-3-030-73303-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics