Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman and Hall.
CrossRef
Google Scholar
Anselin, L. (1998). Spatial econometrics: Methods and models. Berlin: Springer.
Google Scholar
Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267.
CrossRef
Google Scholar
Billard, L., & Diday, E. (2020). Clustering methodology for symbolic data. New Jersey: Wiley Ltd.
Google Scholar
Billard, L., & Diday, E. (2012). Symbolic data analysis: Conceptual statistics and data mining. New Jersey: Wiley.
MATH
Google Scholar
Bock, H.-H., & Diday, E. (2012). Analysis of symbolic data: Exploratory methods for extracting statistical information from complex data. Springer Science & Business Media.
Google Scholar
Elhorst, J. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9–28.
CrossRef
Google Scholar
Goulard, M., Laurent, T., & Thomas-Agnan, C. (2017). About predictions in spatial autoregressive models: Optimal and almost optimal strategies. Spatial Economic Analysis, 12(2–3), 304–325.
CrossRef
Google Scholar
Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications. Springer Science & Business Media.
Google Scholar
Hron, K., Filzmoser, P., & Thompson, K. (2012). Linear regression with compositional explanatory variables. Journal of Applied Statistics, 39(5), 1115–1128.
MathSciNet
CrossRef
Google Scholar
Huang, T., Saporta, G., Wang, H., & Wang, S. (2020). A robust spatial autoregressive scalar-on-function regression with t-distribution. Advances in Data Analysis and Classification,. https://doi.org/10.1007/s11634-020-00384-w.
CrossRef
Google Scholar
Huang, T., Wang, H., & Saporta, G. (2019). Spatial autoregressive model for compositional data. Journal of Beijing University of Aeronautics and Astronautics, 45(1), 93–98.
Google Scholar
Lesage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. London: Chapman and Hall/CRC.
CrossRef
Google Scholar
Manski, C. F. (1993). Identification of endogenous social effects: the reflection problem. Review of Economic Studies, 60, 531–542.
MathSciNet
CrossRef
Google Scholar
Martín-Fernández, J. A., Engle, M. A., Ruppert, L. F., & Olea, R. A. (2019). Advances in self-organizing maps for their application to compositional data. Stochastic Environmental Research and Risk Assessment, 33, 817–826.
CrossRef
Google Scholar
McKinley, J. M., Mueller, U., Atkinson, P. M., Ofterdinger, U., Jackson, C., & Cox, S. F., et al. (2020). Investigating the influence of environmental factors on the incidence of renal disease with compositional data analysis using balances. Applied Computing and Geosciences., 6.
Google Scholar
Ochs, M., Diday, E., & Afonso, F. (2016). From the Symbolic Analysis of Virtual Faces to a Smiles Machine. IEEE Transactions on Cybernetics, 46(2), 401–409.
CrossRef
Google Scholar
Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: Theory and applications. New Jersey: Wiley.
CrossRef
Google Scholar
Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015). Modeling and analysis of compositional data. New Jersey: Wiley Ltd.
Google Scholar
Qu, X., Lee, L.-f.: Estimating a spatial autoregressive model with an endogenous spatial weight matrix. Journal of Econometrics, 184(2), 209–232 (2015).
Google Scholar
Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: Methods and case studies. New York: Springer.
CrossRef
Google Scholar
Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis. New York: Springer.
CrossRef
Google Scholar
Wang, J. L., Chiou, J. M., & Müller, H. G. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3, 257–295.
CrossRef
Google Scholar
Wang, H., Huang, T., & Wang, S. (2019a). A flexible spatial autoregressive modelling framework for mixed covariates of multiple data types. Communications in Statistics-Simulation and Computation,. https://doi.org/10.1080/03610918.2019.1626885.
Wang, H., Shangguan, L., Wu, J., & Guan, R. (2013). Multiple linear regression modeling for compositional data. Neurocomputing, 122, 490–500.
CrossRef
Google Scholar
Wang, Z., Wang, H., Wang, S., Lu, S., & Saporta, G. (2019b). Linear mixed-effects model for longitudinal complex data with diversified characteristics. Journal of Management Science and Engineering,. https://doi.org/10.1016/j.jmse.2019.11.001.