Skip to main content

Protective Effects of Curcumin in the Reproductive System: Anti-toxic, Semen Cryopreservative, and Contraceptive Actions

  • Chapter
  • First Online:
Book cover Natural Products and Human Diseases

Abstract

Human daily exposure to various chemical and biological agents is growing due to modern life, and most of these chronic or acute exposures lead to important recognized toxicities. Multiple tissues and body systems could be affected following these exposures and among them is the human reproductive system, which is very vulnerable to toxins. Here we focus mainly on the male reproductive system, and available data show that various exogenous materials could have negative effects on male reproductive parameters. Interestingly, the well-known antioxidant natural product curcumin may have properties which could diminish these toxic effects. Curcumin has also shown some promise in the cryoprotection of sperm samples through its antioxidant potential. Finally, limited data exists on the putative contraceptive activity of curcumin. This narrative review aims to appraise the activity of curcumin within these topics through the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vander Borght, M., & Wyns, C. (2018). Fertility and infertility: Definition and epidemiology. Clinical Biochemistry, 62, 2–10.

    Article  PubMed  Google Scholar 

  2. Asadi, N., Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. Journal of Clinical and Diagnostic Research: JCDR, 11(5), IE01–IE05.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Joe, B., Vijaykumar, M., & Lokesh, B. R. (2004). Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 44(2), 97–111.

    Article  CAS  PubMed  Google Scholar 

  4. Panahi, Y., Ahmadi, Y., Teymouri, M., Johnston, T.P., Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms (2018) Journal of Cellular Physiology, 233(1), 141–152.

    Google Scholar 

  5. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L. E., Majeed, M., et al. (2018). Effects of Curcuminoids plus Piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled trial. Drug Research, 68(7), 403–409.

    Google Scholar 

  6. Teymouri, M., Pirro, M., Johnston, T. P., & Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 43(3), 331–346. 

    Google Scholar 

  7. Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M. H., Khanbabaei, H., Shamshirian, A., et al. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology Research and Practice, 215(10), art. no. 152556. 

    Google Scholar 

  8. Boroumand, N., Samarghandian, S., & Hashemy, S. I. (2018). Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. Journal of Herbmed Pharmacology, 7(4), 211–219.

    Article  CAS  Google Scholar 

  9. Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology, 595, 105–125.

    Article  PubMed  Google Scholar 

  10. Bianconi, V., Sahebkar, A., Atkin, S.L., & Pirro, M. (2018). The regulation and importance of monocyte chemoattractant protein-1. Current Opinion in Hematology, 25(1), 44–51.

    Google Scholar 

  11. Mohebbati, R., Anaeigoudari, A., & Khazdair, M. R. (2017). The effects of Curcuma longa and curcumin on reproductive systems. Endocrine Regulations, 51(4), 220–228.

    Article  CAS  PubMed  Google Scholar 

  12. Chanapiwat, P., & Kaeoket, K. (2015). The effect of Curcuma longa extracted (curcumin) on the quality of cryopreserved boar semen. Animal Science Journal, 86(9), 863–868.

    CAS  PubMed  Google Scholar 

  13. Creasy, D. M. (2001). Pathogenesis of male reproductive toxicity. Toxicologic Pathology, 29(1), 64–76.

    Article  CAS  PubMed  Google Scholar 

  14. Janssen, S. (2013). Male reproductive toxicology. In Male reproductive current diagnosis & treatment: Occupational & environmental medicine.

    Google Scholar 

  15. Agarwal, A., Virk, G., Ong, C., & du Plessis, S. S. (2014). Effect of oxidative stress on male reproduction. The World Journal of Men’s Health, 32(1), 1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2016). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. Journal of Traditional and Complementary Medicine, 7(2), 205–233.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chainani-Wu, N. (2003). Safety and anti-inflammatory activity of curcumin: A component of turmeric (Curcuma longa). Journal of Alternative and Complementary Medicine, 9(1), 161–168.

    Article  PubMed  Google Scholar 

  18. Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its’ effects on human health. Food, 6(10), 92.

    Article  Google Scholar 

  19. Ak, T., & Gulcin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27–37.

    Article  CAS  PubMed  Google Scholar 

  20. Ono, M., Higuchi, T., Takeshima, M., Chen, C., & Nakano, S. (2013). Antiproliferative and apoptosis-inducing activity of curcumin against human gallbladder adenocarcinoma cells. Anticancer Research, 33(5), 1861–1866.

    CAS  PubMed  Google Scholar 

  21. Shakeri, A., Ward, N., Panahi, Y., & Sahebkar, A. (2018). Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Current Vascular Pharmacology.

    Google Scholar 

  22. Vallianou, N. G., Evangelopoulos, A., Schizas, N., & Kazazis, C. (2015). Potential anticancer properties and mechanisms of action of curcumin. Anticancer Research, 35(2), 645–651.

    CAS  PubMed  Google Scholar 

  23. Holt, P. R. (2016). Curcumin for inflammatory bowel disease: A caution. Clinical Gastroenterology and Hepatology, 14(1), 168.

    Article  PubMed  Google Scholar 

  24. Shehzad, A., Rehman, G., & Lee, Y. S. (2013). Curcumin in inflammatory diseases. BioFactors, 39(1), 69–77.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Z., Leong, D. J., Xu, L., He, Z., Wang, A., Navati, M., et al. (2016). Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Research & Therapy, 18128.

    Google Scholar 

  26. Aggarwal, B. B. (2010). Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annual Review of Nutrition, 30, 173–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng, Q. X., Koh, S. S. H., Chan, H. W., & Ho, C. Y. X. (2017). Clinical use of curcumin in depression: A meta-analysis. Journal of the American Medical Directors Association, 18(6), 503–508.

    Article  PubMed  Google Scholar 

  28. Lelli, D., Sahebkar, A., Johnston, T. P., & Pedone, C. (2017). Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacological Research, 115, 133–148.

    Google Scholar 

  29. Monroy, A., Lithgow, G. J., & Alavez, S. (2013). Curcumin and neurodegenerative diseases. BioFactors, 39(1), 122–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), 921–931.

    Google Scholar 

  31. Dall’Acqua, S., Stocchero, M., Boschiero, I., Schiavon, M., Golob, S., Uddin, J., et al. (2016). New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach. Fitoterapia, 109, 125–131.

    Article  PubMed  Google Scholar 

  32. Ganiger, S., Malleshappa, H. N., Krishnappa, H., Rajashekhar, G., Ramakrishna Rao, V., & Sullivan, F. (2007). A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food and Chemical Toxicology, 45(1), 64–69.

    Article  CAS  PubMed  Google Scholar 

  33. Murphy, C. J., Tang, H., Van Kirk, E. A., Shen, Y., & Murdoch, W. J. (2012). Reproductive effects of a pegylated curcumin. Reproductive Toxicology, 34(1), 120–124.

    Article  CAS  PubMed  Google Scholar 

  34. Soleimani, V., Sahebkar, A., & Hosseinzadeh, H. (2018). Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Phytotherapy Research, 32(6), 985–995.

    Article  CAS  PubMed  Google Scholar 

  35. Verma, R. J. M. N. (2010). Curcumin Ameliorates A fl atoxin-induced changes in caput and cauda epididymis of mice.

    Google Scholar 

  36. Mathuria, N., & Verma, R. J. (2008). Curcumin ameliorates aflatoxin-induced toxicity in mice spermatozoa. Fertility and Sterility, 90(3), 775–780.

    Article  CAS  PubMed  Google Scholar 

  37. Zoheb, S. M., Prakash, A., Rahal, A., Mandil, R., Gangwar, N. K., & Garg, S. K. (2014). Curcumin attenuates oxidative stress-induced altered histoarchitecture of testes in experimentally exposed rats to metal mixture (lead, arsenic, cadmium, mercury, iron, and copper) for 28 days. Toxicological. Environmental Chemistry, 96(4), 660–679.

    CAS  Google Scholar 

  38. Cheraghi, E., Golkar, A., Roshanaei, K., & Alani, B. (2017). Aluminium-induced oxidative stress, apoptosis and alterations in testicular tissue and sperm quality in Wistar rats: Ameliorative effects of curcumin. International Journal of Fertility & Sterility, 11(3), 166–175.

    CAS  Google Scholar 

  39. Aktas, C., Kanter, M., Erboga, M., & Ozturk, S. (2012). Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicology and Industrial Health, 28(2), 122–130.

    Article  CAS  PubMed  Google Scholar 

  40. Coskun, G., Ozgur, H., Doran, S., & Polat, S. (2016). Ameliorating effects of curcumin on nicotine-induced mice testes. Turkish Journal of Medical Sciences, 46(2), 549–560.

    Article  CAS  PubMed  Google Scholar 

  41. Jalili, C., Khani, F., Salahshoor, M. R., & Roshankhah, S. (2014). Protective effect of curcumin against nicotine-induced damage on reproductive parameters in male mice. International Journal of Morphology, 32, 844–849.

    Article  Google Scholar 

  42. Noorafshan, A., Karbalay-Doust, S., Valizadeh, A., Aliabadi, E., & Mirkhani, H. (2010). Ameliorative effects of curcumin on the seminiferous epithelium in metronidazole-treated mice: A stereological study. Toxicologic Pathology, 38(3), 366–371.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma, D. P, & Singh, D. R. (2010). Protective role of Curcumin on Lindane induced reproductive toxicity in male wistar rats.

    Google Scholar 

  44. Jalili, C., Khani, F., Salahshoor, M. R., & Roshankhah, S. (2014). Protective effect of curcumin against nicotine-induced damage on reproductive parameters in male mice. International Journal of Morphology, 32, 844–849.

    Article  Google Scholar 

  45. Lonare, M., Kumar, M., Raut, S., More, A., Doltade, S., Badgujar, P., et al. (2016). Evaluation of ameliorative effect of curcumin on imidacloprid-induced male reproductive toxicity in wistar rats. Environmental Toxicology, 31(10), 1250–1263.

    Article  CAS  PubMed  Google Scholar 

  46. Lu, W. P., Mei, X. T., Wang, Y., Zheng, Y. P., Xue, Y. F., & Xu, D. H. (2015). Zn(II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environmental Toxicology and Pharmacology, 39(2), 515–524.

    Article  CAS  PubMed  Google Scholar 

  47. Mahmoudi, R., Honarmand, Z., Karbalay-Doust, S., Jafari-Barmak, M., Nikseresht, M., & Noorafshan, A. (2017). Using curcumin to prevent structural impairments of testicles in rats induced by sodium metabisulfite. EXCLI Journal, 16583–16592.

    Google Scholar 

  48. Desai, K. R., Dattani, J. J., Rajput, D. K., Moid, N., Highland, H. N., & George, L. B. (2012). Role of curcumin on chloroquine phosphate-induced reproductive toxicity. Drug and Chemical Toxicology, 35(2), 184–191.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma, P., & Singh, R. (2010). Protective role of curcumin on lindane induced reproductive toxicity in male Wistar rats. Bulletin of Environmental Contamination and Toxicology, 84(4), 378–384.

    Article  CAS  PubMed  Google Scholar 

  50. Bulmuş, F. G., Sakin, F., Türk, G., Sönmez, M., & Servi, K. (2013). Protective effects of curcumin on antioxidant status, body weight gain, and reproductive parameters in male rats exposed to subchronic 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicological. Environmental Chemistry, 95(6), 1019–1029.

    Google Scholar 

  51. Sharma, P., Khan, I. A., & Singh, R. (2018). Curcumin and quercetin ameliorated cypermethrin and deltamethrin-induced reproductive system impairment in male wistar rats by upregulating the activity of pituitary-gonadal hormones and steroidogenic enzymes. International Journal of Fertility & Sterility, 12(1), 72.

    CAS  Google Scholar 

  52. Khalaji, N., Namyari, M., Rasmi, Y., Pourjabali, M., & Chodari, L. (2018). Protective effect of curcumin on fertility of rats after exposure to compact fluorescent lamps: An experimental study. International Journal of Reproductive Biomedicine, 16(7), 447.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sudjarwo, S. A., Sudjarwo, G. W., & Koerniasari. (2017). Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Research in Pharmaceutical Sciences, 12(5), 381–390.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mercantepe, T., Unal, D., Tumkaya, L., & Yazici, Z. A. (2018). Protective effects of amifostine, curcumin and caffeic acid phenethyl ester against cisplatin-induced testis tissue damage in rats. Experimental and Therapeutic Medicine, 15(4), 3404–3412.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ilbey, Y. O., Ozbek, E., Cekmen, M., Simsek, A., Otunctemur, A., & Somay, A. (2009). Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: Mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Human Reproduction, 24(7), 1717–1725.

    Article  CAS  PubMed  Google Scholar 

  56. Mohajeri, M., Behnam, B., Cicero, A. F., & Sahebkar, A. (2018). Protective effects of curcumin against aflatoxicosis: A comprehensive review. Journal of Cellular Physiology, 233(4), 3552–3577.

    Article  CAS  PubMed  Google Scholar 

  57. Qin, X., Cao, M., Lai, F., Yang, F., Ge, W., Zhang, X., et al. (2015). Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS One, 10(6), e0127551.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pizent, A., Tariba, B., & Živković, T. (2012). Reproductive toxicity of metals in men. Archives of Industrial Hygiene and Toxicology, 63(Supplement 1), 35–46.

    PubMed  Google Scholar 

  59. Sengupta, P., Banerjee, R., Nath, S., Das, S., & Banerjee, S. (2015). Metals and female reproductive toxicity. Human & Experimental Toxicology, 34(7), 679–697.

    Article  CAS  Google Scholar 

  60. Oguzturk, H., Ciftci, O., Aydin, M., Timurkaan, N., Beytur, A., & Yilmaz, F. (2012). Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia, 44(4), 243–249.

    Article  CAS  PubMed  Google Scholar 

  61. Ahmadnia, H., Ghanbari, M., Moradi, M. R., & Khaje-Dalouee, M. (2007). Effect of cigarette smoke on spermatogenesis in rats. Urology Journal, 4(3), 159–163.

    PubMed  Google Scholar 

  62. Rajpurkar, A., Li, H., & Dhabuwala, C. B. (2000). Morphometric analysis of rat testis following chronic exposure to cigarette smoke. Journal of Environmental Pathology, Toxicology and Oncology, 19(4), 363–368.

    CAS  PubMed  Google Scholar 

  63. Aydos, K., Guven, M. C., Can, B., & Ergun, A. (2001). Nicotine toxicity to the ultrastructure of the testis in rats. BJU International, 88(6), 622–626.

    Article  CAS  PubMed  Google Scholar 

  64. Pelclova, D., Urban, P., Preiss, J., Lukas, E., Fenclova, Z., Navratil, T., et al. (2006). Adverse health effects in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reviews on Environmental Health, 21(2), 119–138.

    Article  CAS  PubMed  Google Scholar 

  65. Ilacqua, A., Izzo, G., Emerenziani, G. P., Baldari, C., & Aversa, A. (2018). Lifestyle and fertility: The influence of stress and quality of life on male fertility. Reproductive Biology and Endocrinology, 16(1), 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garruti, G., Depalo, R., & De Angelis, M. (2019). Weighing the impact of diet and lifestyle on female reproductive function. Current Medicinal Chemistry, 26, 3584–3592.

    Article  CAS  PubMed  Google Scholar 

  67. Ahmed-Farid, O. A. H., Nasr, M., Ahmed, R. F., & Bakeer, R. M. (2017). Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: Enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content. Journal of Biomedical Science, 24(1), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mu, Y., Yan, W. J., Yin, T. L., & Yang, J. (2016). Curcumin ameliorates high fat diet induced spermatogenesis dysfunction. Molecular Medicine Reports, 14(4), 3588–3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jensen, T. K., Andersson, A. M., Jorgensen, N., Andersen, A. G., Carlsen, E., Petersen, J. H., et al. (2004). Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertility and Sterility, 82(4), 863–870.

    Article  CAS  PubMed  Google Scholar 

  70. Kort, H. I., Massey, J. B., Elsner, C. W., Mitchell-Leef, D., Shapiro, D. B., Witt, M. A., et al. (2006). Impact of body mass index values on sperm quantity and quality. Journal of Andrology, 27(3), 450–452.

    Article  PubMed  Google Scholar 

  71. Lin, C., Shin, D. G., Park, S. G., Chu, S. B., Gwon, L. W., Lee, J. G., et al. (2015). Curcumin dose-dependently improves spermatogenic disorders induced by scrotal heat stress in mice. Food & Function, 6(12), 3770–3777.

    Article  CAS  Google Scholar 

  72. Izadpanah, M., Alizadeh, R., Minaee, M. B., Heydari, L., Babatunde, A., & Abbasi, M. (2015). The effects of curcumin on sperm parameters and nitric oxide production in varicocelized rats. International Journal of Morphology, 33, 1530–1535.

    Article  Google Scholar 

  73. Mohamadpour, M., Noorafshan, A., Karbalay-Doust, S., Talaei-Khozani, T., & Aliabadi, E. (2017). Protective effects of curcumin co-treatment in rats with establishing chronic variable stress on testis and reproductive hormones. International Journal of Reproductive Biomedicine (Yazd, Iran), 15(7), 447–452.

    CAS  Google Scholar 

  74. Semet, M., Paci, M., Saïas-Magnan, J., Metzler-Guillemain, C., Boissier, R., Lejeune, H., et al. (2017). The impact of drugs on male fertility: A review. Andrology, 5(4), 640–663.

    Article  CAS  PubMed  Google Scholar 

  75. Freeman, C. D., Klutman, N. E., & Lamp, K. C. (1997). Metronidazole. A therapeutic review and update. Drugs, 54(5), 679–708.

    Article  CAS  PubMed  Google Scholar 

  76. Gevrek, F., & Erdemir, F. (2018). Investigation of the effects of curcumin, vitamin E and their combination in cisplatin-induced testicular apoptosis using immunohistochemical technique. Turkish Journal of Urology, 44(1), 16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Abarikwu, S. O., Akiri, O. F., Durojaiye, M. A., & Alabi, A. F. (2014). Combined administration of curcumin and gallic acid inhibits gallic acid-induced suppression of steroidogenesis, sperm output, antioxidant defenses and inflammatory responsive genes. The Journal of Steroid Biochemistry and Molecular Biology, 143, 49–60.

    Article  CAS  PubMed  Google Scholar 

  78. El-Maddawy, Z. K., & El-Sayed, Y. S. (2018). Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environmental Science and Pollution Research International, 25(4), 3468–3479.

    Article  CAS  PubMed  Google Scholar 

  79. Banerjee, B., Chakraborty, S., Ghosh, D., Raha, S., Sen, P. C., & Jana, K. (2016). Benzo(a)pyrene induced p53 mediated male germ cell apoptosis: Synergistic protective effects of curcumin and resveratrol. Frontiers in Pharmacology, 7, 245.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Farombi, E. O., Abarikwu, S. O., Adedara, I. A., & Oyeyemi, M. O. (2007). Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic & Clinical Pharmacology & Toxicology, 100(1), 43–48.

    Article  CAS  Google Scholar 

  81. Sahoo, D. K., Roy, A., & Chainy, G. B. (2008). Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chemico-Biological Interactions, 176(2–3), 121–128.

    Article  CAS  PubMed  Google Scholar 

  82. Viudes-de-Castro, M. P., Lavara, R., Safaa, H. M., Marco-Jimenez, F., Mehaisen, G. M., & Vicente, J. S. (2014). Effect of freezing extender composition and male line on semen traits and reproductive performance in rabbits. Animal, 8(5), 765–770.

    Article  CAS  PubMed  Google Scholar 

  83. Bucak, M. N., Baspinar, N., Tuncer, P. B., Coyan, K., Sariozkan, S., Akalin, P. P., et al. (2012). Effects of curcumin and dithioerythritol on frozen-thawed bovine semen. Andrologia, 44(Suppl), 1102–1109.

    Google Scholar 

  84. Tvrdá, E., Halenár, M., Greifová, H., Mackovich, A., Hashim, F., & Lukáč, N. (2016). The effect of Curcumin on cryopreserved bovine semen. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering.

    Google Scholar 

  85. Omur, A. D., & Coyan, K. (2016). Protective effects of the antioxidants curcumin, ellagic acid and methionine on motility, mitochondrial transmembrane potential, plasma membrane and acrosome integrity in freeze-thawed Merino ram sperm. Veterinární Medicína, 61(1), 10–16.

    Article  CAS  Google Scholar 

  86. Soleimanzadeh, A., & Saberivand, A. (2013). Effect of curcumin on rat sperm morphology after the freeze-thawing process. Veterinary Research Forum, 4(3), 185–189.

    PubMed  PubMed Central  Google Scholar 

  87. Tvrda, E., Tusimova, E., Kovacik, A., Paal, D., Greifova, H., Abdramanov, A., et al. (2016). Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Animal Reproduction Science, 17210–17220.

    Google Scholar 

  88. Bucak, M. N., Sarıözkan, S., Tuncer, P. B., Sakin, F., Ateşşahin, A., Kulaksız, R., et al. (2010). The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Ruminant Research, 89(1), 24–30.

    Article  Google Scholar 

  89. Naz, R. K. (2011). Can curcumin provide an ideal contraceptive? Molecular Reproduction and Development, 78(2), 116–123.

    Article  CAS  PubMed  Google Scholar 

  90. Naz, R. K., & Lough, M. L. (2014). Curcumin as a potential non-steroidal contraceptive with spermicidal and microbicidal properties. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 176142–176148.

    Google Scholar 

  91. Mishra, R. K., & Singh, S. K. (2009). Reversible antifertility effect of aqueous rhizome extract of Curcuma longa L. in male laboratory mice. Contraception, 79(6), 479–487.

    Article  PubMed  Google Scholar 

  92. Diah, D., Ramdan, P., Anna, M., Samsudin, S., Herry, Y., & Adi Santosa, M. (2016). Potency of turmeric rhizome decoction on sperm infertility of male mice to succeed family planning program in west java society. International Journal of Pharmacy and Pharmaceutical Sciences, 8(13).

    Google Scholar 

  93. Purohit, A. (1999). ANTIFERTILITY efficacy of CURCUMA longa (50% E to H extract) with special referance to serum biochemistry and fertility test. Ancient Science of Life, 18(3–4), 192–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ogbuewu, I. P., Okehi, M. C., & Jiwuba, P. C. (2017). Effect of phytobiotic (turmeric) supplementation on semen and blood characteristics of rabbits. Comparative Clinical Pathology, 26(4), 817–822.

    Article  CAS  Google Scholar 

  95. Rithaporn, T., Monga, M., & Rajasekaran, M. (2003). Curcumin: A potential vaginal contraceptive. Contraception, 68(3), 219–223.

    Article  CAS  PubMed  Google Scholar 

  96. Naz, R. K., Lough, M. L., & Barthelmess, E. K. (2016). Curcumin: A novel non-steroidal contraceptive with antimicrobial properties. Frontiers in Bioscience (Elite Edition), 8113–8128.

    Google Scholar 

  97. Hu, G. X., Liang, G., Chu, Y., Li, X., Lian, Q. Q., Lin, H., et al. (2010). Curcumin derivatives inhibit testicular 17beta-hydroxysteroid dehydrogenase 3. Bioorganic & Medicinal Chemistry Letters, 20(8), 2549–2551.

    Article  CAS  Google Scholar 

  98. Xia, X., Cai, H., Qin, S., & Xu, C. (2012). Histone acetylase inhibitor curcumin impairs mouse spermiogenesis-an in vitro study. PLoS One, 7(11), e48673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moshari, S., Nejati, V., Najafi, G., & Razi, M. (2018). Insight into curcumin nanomicelle-induced derangements in male reproduction potential: An experimental study. Andrologia, 50(2).

    Google Scholar 

  100. Moshari, S., Nejati, V., Najafi, G., & Razi, M. (2017). Nanomicelle curcumin-induced DNA fragmentation in testicular tissue; Correlation between mitochondria dependent apoptosis and failed PCNA-related hemostasis. Acta Histochemica, 119(4), 372–381.

    Article  CAS  PubMed  Google Scholar 

  101. Naz, R. K. (2014). The effect of curcumin on intracellular pH (pHi), Membrane Hyperpolarization and Sperm Motility. The Journal of Reproduction & Infertility, 15(2), 62–70.

    Google Scholar 

  102. Gaurav, C., Goutam, R., Rohan, K. N., Sweta, K. T., Abhay, C. S., & Amit, G. K. (2014). (Copper–curcumin) β-cyclodextrin vaginal gel: Delivering a novel metal–herbal approach for the development of topical contraception prophylaxis. European Journal of Pharmaceutical Sciences, 65183–65191.

    Google Scholar 

  103. Gaurav, C., Goutam, R., Rohan, K. N., Sweta, K. T., Abhay, C. S., & Amit, G. K. (2015). In situ stabilized AgNPs and (Cu-Cur)CD dispersed gel, a topical contraceptive antiretroviral (ARV) microbicide. RSC Advances, 5(101), 83013–83028.

    Article  CAS  Google Scholar 

  104. Patel, N., Thakkar, V., Moradiya, P., Gandhi, T., & Gohel, M. (2015). Optimization of curcumin loaded vaginal in-situ hydrogel by box-behnken statistical design for contraception. Journal of Drug Delivery Science and Technology, 2955–2969.

    Google Scholar 

Download references

Acknowledgements

None.

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Date Availability

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behzad Behnam or Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riahi, M.M., Behnam, B., Henney, N.C., Jamialahmadi, T., Sahebkar, A. (2021). Protective Effects of Curcumin in the Reproductive System: Anti-toxic, Semen Cryopreservative, and Contraceptive Actions. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_15

Download citation

Publish with us

Policies and ethics