Skip to main content

PAS: Enable Partial Consensus in the Blockchain

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12683))

Included in the following conference series:

Abstract

Permissioned Blockchain enables distributed collaboration among organizations that may not trust each other. However, existing systems cannot efficiently support the ordering and execution of transactions in different workflows parallelly, which seriously affects system scalability and performances in terms of throughput and latency.

In this paper, we present a partial consensus mechanism named PAS to achieve fault tolerance and parallelism of transaction processing. In PAS, transactions in different workflows only need to be confirmed by the involved subset of nodes, which significantly enhances the system performance and scalability. Specifically, we introduce a novel data structure, called the hierarchical consensus tree (HCT). It is maintained in each node and used to coordinate the consensus process. HCT guarantees that the consistency reached in different sets of nodes is eventually agreed by all nodes without conflicts and rollbacks. Since there are many valid HCTs with different system improvements, we introduce an optimization problem, named OHCT, to obtain an HCT with respect to the optimal enhancement. We prove OHCT is NP-hard and propose a general framework with efficient algorithms to address it. Finally, we implement PAS on PBFT-based Hyperledger fabric and conduct extensive experiments to show the performance and scalability of PAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.multichain.com/.

References

  1. Amiri, M.J., Agrawal, D., Abbadi, A.E.: Caper: a cross-application permissioned blockchain. In: VLDB (2019)

    Google Scholar 

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: EuroSys (2018)

    Google Scholar 

  3. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: Horizontal scaling and confidentiality on permissioned blockchains. In: ESORICS (2018)

    Google Scholar 

  4. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of np-hard problems. JCSS (1999)

    Google Scholar 

  5. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv preprint arXiv:1807.04938 (2018)

  6. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. (1992)

    Google Scholar 

  7. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI (1999)

    Google Scholar 

  8. Churyumov, A.: Byteball: A decentralized system for storage and transfer of value (2016)

    Google Scholar 

  9. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards scaling blockchain systems via sharding. In: SIGMOD (2019)

    Google Scholar 

  10. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A framework for analyzing private blockchains. In: SIGMOD (2017)

    Google Scholar 

  11. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP (2017)

    Google Scholar 

  12. Han, S., Xu, Z., Chen, L.: Jupiter: a blockchain platform for mobile devices. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1649–1652. IEEE (2018)

    Google Scholar 

  13. Han, S., Xu, Z., Zeng, Y., Chen, L.: Fluid: a blockchain based framework for crowdsourcing. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1921–1924 (2019)

    Google Scholar 

  14. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger. In: IEEE SP (2018)

    Google Scholar 

  15. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via sharding. In: SP (2018)

    Google Scholar 

  16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative byzantine fault tolerance. In: SIGOPS (2007)

    Google Scholar 

  17. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: SIGSAC (2016)

    Google Scholar 

  18. Mckeen, F., et al.: Innovative instructions and software model for isolated execution. In: Hasp@isca (2013)

    Google Scholar 

  19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

    Google Scholar 

  20. Popov, S.: The tangle. cit. on (2016)

    Google Scholar 

  21. Stathakopoulou, C., David, T., Vukolić, M.: Mir-bft: High-throughput bft for blockchains. arXiv preprint arXiv:1906.05552 (2019)

  22. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: SP (2017)

    Google Scholar 

  23. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper (2014)

    Google Scholar 

  24. Wüst, K., Gervais, A.: Do you need a blockchain? In: CVCBT (2018)

    Google Scholar 

  25. Xu, Z., Han, S., Chen, L.: Cub, a consensus unit-based storage scheme for blockchain system. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 173–184. IEEE (2018)

    Google Scholar 

  26. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consensus with linearity and responsiveness. In: PODC (2019)

    Google Scholar 

  27. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full sharding. In: SIGSAC (2018)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the Hong Kong RGC GRF Project 16213620, CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project AoE/E-603/18, China NSFC No. 61729201, Guangdong Basic and Applied Basic Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, Didi-HKUST joint research lab project, and Wechat and Webank Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Han, S., Chen, L. (2021). PAS: Enable Partial Consensus in the Blockchain. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021. Lecture Notes in Computer Science(), vol 12683. Springer, Cham. https://doi.org/10.1007/978-3-030-73200-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73200-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73199-1

  • Online ISBN: 978-3-030-73200-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics