Skip to main content

Möbius Inversions

  • Chapter
  • First Online:
Excursions in Multiplicative Number Theory

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 964 Accesses

Abstract

This chapter is combinatorial and rather rewarding: we are going to present three procedures that yield interesting formulas in a rather magical way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thanks to the DigiZeitschriften project hosted by the university of Göttingen, we can have an access to this text online, though some knowledge of Latin is required. The classical reference book [4] on history of numbers of L.E. Dickson may serve as a first guide, and for instance, the paper [9] is mentioned in Chap. XIX of this series of three books.

  2. 2.

    Gram won the Gold Medal of the Royal Danish Academy of Sciences in 1884 for the paper he published that contains inter alia this inequality, see [5, p 196-197].

References

  1. R.P. Brent and J. van de Lune. “A note on Pólya’s observation concerning Liouville’s function”. In: Leven met getallen : liber amicorum ter gelegenheid van de pensionering van Herman te Riele. Ed. by J.A.J. van Vonderen (Coby). CWI (cit. on p. 58).

    Google Scholar 

  2. F. Daval. “Identités intégrales et estimations explicites associées pour les fonctions sommatoires liées á la fonction de Möbius et autres fonctions arithmétiques”. PhD thesis. Université de Lille, Mathematics, 2019 (cit. on pp. 60, 62).

    Google Scholar 

  3. H. Davenport. “On some infinite series involving arithmetical functions”. In: Quart. J. Math., Oxf. Ser. 8 (1937), pp. 8–13 (cit. on p. 59).

    Google Scholar 

  4. L.E. Dickson. Theory of numbers. Chelsea Publishing Company, 1971 (cit. on p. 59).

    Google Scholar 

  5. J.P. Gram. Undersøgelser angaaende Maengden af Primtal under en given Graense. Résumé en français. Danish. Kjöbenhavn. Skrift. (6) II. 185-308 (1884). 1884 (cit. on p. 59).

    Google Scholar 

  6. A.J. Granville and O. Ramaré. “Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients”. In: Mathematika 43.1 (1996), pp. 73–107 (cit. on p. 59).

    Google Scholar 

  7. K. Knopp. “Über Lambertsche Reihen.” In: J. Reine Angew. Math. 142 (1913), pp. 283–315 (cit. on p. 58).

    Google Scholar 

  8. J.H. Lambert. Anlage zur Architectonik oder Theorie des Einfachen und Ersten in des philosophischen und mathematischen Erkenntnis. 2 vol. Riga, 1771 (cit. on p. 58).

    Google Scholar 

  9. D.F.E. Meissel. “Observationes quaedam in theoria numerorum”. Latin. In: J. Reine Angew. Math. 48 (1854), pp. 301–316. https://doi.org/10.1515/crll.1854.48.301 (cit. on p. 59).

  10. Ch.H. Müntz. “Beziehungen der Riemannschen \(\zeta \)-Funktion zu willkürlichen reellen Funktionen”. German. In: Mat. Tidsskr. B 1922 (1922), pp. 39–47 (cit. on p. 61).

    Google Scholar 

  11. G. Pólya and G. Szegő. Problems and theorems in analysis. II. Classics in Mathematics. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Translated from the German by C. E. Billigheimer, Reprint of the 1976 English translation. Springer-Verlag, Berlin, 1998, pp. xii+392. https://doi.org/10.1007/978-3-642-61905-2_7 (cit. on p. 58).

  12. O. Ramaré “Explicit estimates on several summatory functions involving the Moebius function”. In: Math. Comp. 84.293 (2015), pp. 1359–1387 (cit. on pp. 62, 63).

    Google Scholar 

  13. O. Ramaré. “Explicit average orders: news and problems”. In: Number theory week 2017. Vol. 118. Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw, 2019, pp. 153–176 (cit. on pp. 61, 63).

    Google Scholar 

  14. G.-C. Rota. “On the foundations of combinatorial theory. I. Theory of Möbius functions”. In: Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). https://doi.org/10.1007/BF00531932 (cit. on p. 57).

  15. T. Tao. “A remark on partial sums involving the Möbius function”. English. In: Bull. Aust. Math. Soc. 81.2 (2010), pp. 343–349. https://doi.org/10.1017/S0004972709000884 (cit. on p. 59).

  16. E.C. Titchmarsh. The theory of the Riemann zeta-function. Second. Edited and with a preface by D.R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986, pp. x+412 (cit. on p. 61).

    Google Scholar 

  17. H.C.F. von Mangoldt. “Beweis der Gleichung \(\sum \limits _{k=1}^{\infty } \frac{\mu (k)}{k}=0\)” . German. In: Berl. Ber. 1897 (1897), pp. 835–852 (cit. on p. 59).

    Google Scholar 

  18. S. Yakubovich. “New summation and transformation formulas of the Poisson, Müntz, Möbius and Voronoi type”. In: Integral Transforms Spec. Funct. 26.10 (2015), pp. 768–795. https://doi.org/10.1080/10652469.2015.1051483 (cit. on p. 61).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ramaré .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramaré, O. (2022). Möbius Inversions. In: Excursions in Multiplicative Number Theory. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-73169-4_6

Download citation

Publish with us

Policies and ethics