Skip to main content

The Mertens Estimates

  • Chapter
  • First Online:
Excursions in Multiplicative Number Theory

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 964 Accesses

Abstract

We need estimates for the number of primes in the initial interval. Such estimates are long known. Efforts to make them explicit started in the thirties, see, for instance, the papers [2] by R. Breusch, Robert and [27] by J.B. Rosser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bertrand. “Mémoire sur le nombre de valeurs que peut prendre une fonction quand on permute les lettres qu’elle renferme”. In: Journal de l’École Royale Polytechnique 18. Cahier 30 (1845), pp. 123–140 (cit. on p. 131).

    Google Scholar 

  2. R. Breusch. “Zur Verallgemeinerung des Bertrandschen Postulates, daßzwischen x und 2 x stets Primzahlen liegen”. In: Math. Z. 34.1 (1932), pp. 505–526. https://doi.org/10.1007/BF01180606 (cit. on p. 119).

  3. P.L. Chebyshev. “Mémoire sur les nombres premiers”. In: Journal de mathématiques pures et appliquées, Sér. 1 17 (1852), pp. 366–390 (cit. on p. 123).

    Google Scholar 

  4. N. Costa Pereira. “Elementary estimates for the Chebyshev function \(\psi (x)\) and for the Möbius function \(M(x)\)”. In: Acta Arith. 52.4 (1989), pp. 307–337. https://doi.org/10.4064/aa-52-4-307-337 (cit. on p. 122).

  5. C.-J.G.N.B. de la Vallée-Poussin. “Sur la valeur de certaines constantes arithmétiques”. In: Brux. S. sc. 22 A (1898), pp. 84–90 (cit. on p. 125).

    Google Scholar 

  6. H. Delange. “Sur le nombre des diviseurs premiers de \(n\)”. In: C. R. Acad. Sci. Paris 237 (1953), pp. 542–544 (cit. on p. 128).

    Google Scholar 

  7. P. Dusart. “Inègalitès explicites pour \(\psi (X)\), \(\theta (X)\), \(\pi (X)\) et les nombres premiers”. In: C. R. Math. Acad. Sci., Soc. R. Can. 21.2 (1999), pp. 53–59 (cit. on p. 132).

    Google Scholar 

  8. P.D.T.A. Elliott. Probabilistic number theory. I. Vol. 239. Grundlehren der Mathematischen Wissenschaften. Mean-value theorems. Springer-Verlag, New York-Berlin, 1979, xxii+359+xxxiii pp. (2 plates) (cit. on p. 132).

    Google Scholar 

  9. P.D.T.A. Elliott. Probabilistic number theory. II: Central limit theorems. English. Vol. 240. Springer, Berlin, 1980 (cit. on p. 132).

    Google Scholar 

  10. P. Erdös and M. Kac. “The Gaussian law of errors in the theory of additive number theoretic functions”. In: Amer. J. Math. 62 (1940), pp. 738–742 (cit. on p. 129).

    Google Scholar 

  11. A. Granville and K. Soundararajan. “Sieving and the Erdős-Kac theorem”. In: Equidistribution in number theory, an introduction. Vol. 237. NATO Sci. Ser. II Math. Phys. Chem. Springer, Dordrecht, 2007, pp. 15–27. https://doi.org/10.1007/978-1-4020-5404-4_2 (cit. on p. 128).

  12. D. Hanson. “On the product of the primes”. In: Canad. Math. Bull. 15 (1972), pp. 33–37. https://doi.org/10.4153/CMB-1972-007-7 (cit. on p. 122).

  13. G.H. Hardy and S.A. Ramanujan. “The normal number of prime factors of a number \(n\)”. English. In: Quart. J. 48 (1917), pp. 76–92 (cit. on p. 127).

    Google Scholar 

  14. J. Kubilius. “Probabilistic methods in the theory of numbers”. In: Uspehi Mat. Nauk (N.S.) 11.2(68) (1956), pp. 31–66 (cit. on p. 127).

    Google Scholar 

  15. J. Kubilius. Probabilistic methods in the theory of numbers. Translations of Mathematical Monographs, Vol. 11. American Mathematical Society, Providence, R.I., 1964, pp. xviii+182 (cit. on p. 127).

    Google Scholar 

  16. H. von Mangoldt. “Extract from a paper entitled: Zu Riemann’s Abhandlung “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”. (On Riemann’s study “On the number of primes less than a given bound”.). (Auszug aus einer Arbeit unter dem Titel: Zu Riemann’s Abhandlung “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”.)” In: Berl. Ber. 1894. (1894), pp. 883–896 (cit. on p. 119).

    Google Scholar 

  17. Armel Mercier. “Comportement asymptotique de \(\sum _{n\le x} n^{a}\{ f(x/n)\}\)”. In: Ann. Sci. Math. Québec 9.2 (1985), pp. 199–202 (cit. on p. 125).

    Google Scholar 

  18. P. Moree. “Bertrand’s postulate for primes in arithmetical progressions”. In: Comput. Math. Appl. 26.5 (1993), pp. 35–43. https://doi.org/10.1016/0898-1221(93)90071-3 (cit. on p. 130).

  19. W. Narkiewicz. The development of prime number theory. Springer Monographs in Mathematics. From Euclid to Hardy and Littlewood. Springer-Verlag, Berlin, 2000, pp. xii+448. https://doi.org/10.1007/978-3-662-13157-2 (cit. on p. 119).

  20. F. Pillichshammer. “Euler’s constant and averages of fractional parts”. In: Amer. Math. Monthly 117.1 (2010), pp. 78–83. https://doi.org/10.4169/000298910X475014 (cit. on p. 125).

  21. F. Pillichshammer. “A generalisation of a result of de la Vallée Poussin”. In: Elem. Math. 67.1 (2012), pp. 26–38. https://doi.org/10.4171/EM/190 (cit. on p. 125).

  22. G. Pólya and G. Szegő. Problems and theorems in analysis. II. Classics in Mathematics. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Translated from the German by C. E. Billigheimer, Reprint of the 1976 English translation. Springer- Verlag, Berlin, 1998, pp. xii+392. https://doi.org/10.1007/978-3-642-61905-2_7 (cit. on p. 122).

  23. A. G. Postnikov. Introduction to analytic number theory. Transl. from the Russian by G. A. Kandall. Ed. by Ben Silver. Appendix by P. D. T. A. Elliott. English. Vol. 68. Providence, RI: American Mathematical Society, 1988, pp. vi + 320 (cit. on p. 132).

    Google Scholar 

  24. S. Ramanujan. “A proof of Bertrand’s postulate”. In: J. Indian Math. Soc. XI (1919), pp. 181–182 (cit. on p. 131).

    Google Scholar 

  25. O. Ramaré. “Approximate Formulae for \(L(1,\chi )\), II”. In: Acta Arith. 112 (2004), pp. 141–149 (cit. on p. 131).

    Google Scholar 

  26. O. Ramaré. Un parcours explicite en théorie multiplicative. vii+100 pp. Éditions universitaires europénnes, 2010 (cit. on p. 124).

    Google Scholar 

  27. J.B. Rosser. “The \(n\)-th prime is greater than \(n\) log \(n\)”. In: Proc. Lond. Math. Soc., II. Ser. 45 (1938), pp. 21–44 (cit. on p. 119).

    Google Scholar 

  28. A. Selberg. “On elementary problems in prime number-theory and their limitations”. In: C.R. Onziéme Congrés Math. Scandinaves, Trondheim, Johan Grundt Tanums Forlag (1949), pp. 13–22 (cit. on p. 124).

    Google Scholar 

  29. P. Turán. “On a theorem of Hardy and Ramanujan”. English. In: J. Lond. Math. Soc. 9 (1934), pp. 274–276. https://doi.org/10.1112/jlms/s1-9.4.274 (cit. on p. 129).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ramaré .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramaré, O. (2022). The Mertens Estimates. In: Excursions in Multiplicative Number Theory. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-73169-4_12

Download citation

Publish with us

Policies and ethics