Skip to main content

Abstract

Mitochondria are cellular organelles of outstanding importance because they are responsible for energy production and the control of many processes related to cell metabolism, survival and apoptosis. They are the only cytoplasmic organelles in the animal cells to contain their own DNA, a private genetic material, the mitochondrial DNA (mtDNA), which is frequently referred as “the mitochondrial genome”. In this article, the most important features of mtDNA are reviewed, regarding its structure, functioning, transmission and relation to diseases and aging. Moreover, mtDNA has peculiar properties such as maternal transmission and elevated rates of mutation, which make it an interesting source of information about human origins, dispersion and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts B, Hopkin K, Johnson AD, Morgan D, Raff M, Roberts K, Walter P. Essential cell Biology, 5th International Student Edition. 2018. Wiley.

    Google Scholar 

  2. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106(1):135–59. https://doi.org/10.1093/bmb/ldt017. Epub 2013 May 22. PMID: 23704099; PMCID: PMC3675899.

  3. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105–16.

    Google Scholar 

  4. Taylor RW, Turnbull DM. MtDNA mutations in human disease. Nat Rev Genet. 2005 May;6(5):389–402.

    Article  CAS  Google Scholar 

  5. Margulis L. The origin of plant and animal cells. Am Sci. 1971;59(2):230–5. PMID:5170543.

    Google Scholar 

  6. Gray MW. Rickettsia, typhus and the mitochondrial connection. Nature. 1998;396(6707):109–10. https://doi.org/10.1038/24030. PMID:9823885.

  7. Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001;2(6):REVIEWS1018. https://doi.org/10.1186/gb-2001-2-6-reviews1018.

  8. Thrash JC, Boyd A, Huggett MJ, et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep. 2011;1:13. https://doi.org/10.1038/srep00013.

  9. Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol. 2013;69(2):328–38. https://doi.org/10.1016/j.ympev.2012.10.020. Epub 2012 Nov 7. PMID:23142697.

  10. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–65.

    Article  CAS  Google Scholar 

  11. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mtDNA. Nat Genet. 1999 Oct;23(2):147.

    Article  CAS  Google Scholar 

  12. Jobling M, Hollox E, Kivisild T, Tyler-Smith C. Human evolutionary genetics. 2nd ed. New York: Garland Science; 2013 June 25.

    Book  Google Scholar 

  13. Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA, Kelley RI, Epstein CM, Hopkins LC. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mtDNA disease. Cell. 1988;55(4):601–10.

    Google Scholar 

  14. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348(26):2656–68.

    Google Scholar 

  15. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–250. https://doi.org/10.1002/path.4809. Epub 2016 Nov 2. PMID: 27659608; PMCID:PMC5215404.

  16. Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet. 1993;4(3):289–94. https://doi.org/10.1038/ng0793-289. PMID:7689389.

  17. Estivill X, Govea N, Barceló E, Badenas C, Romero E, Moral L, Scozzri R, D’Urbano L, Zeviani M, Torroni A. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet. 1998;62(1):27–35. https://doi.org/10.1086/301676. PMID:9490575; PMCID:PMC1376822.

  18. Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Inter Med. 2020;287(6):634–44.

    Google Scholar 

  19. Craven L, Alston CL, Taylor RW, Turnbull DM. Recent advances in mitochondrial disease. Annu Rev Genomics Hum Genet. 2017a Aug 31;18:257–75.

    Article  CAS  Google Scholar 

  20. Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mtDNA genomes. Am J Hum Genet. 2010 Aug 13;87(2):237–49.

    Article  CAS  Google Scholar 

  21. Sosa MX, Sivakumar IK, Maragh S, Veeramachaneni V, Hariharan R, Parulekar M, Fredrikson KM, Harkins TT, Lin J, Feldman AB, Tata P, Ehret GB, Chakravarti A. Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency. PLoS Comput Biol. 2012;8(10):e1002737.

    Article  CAS  Google Scholar 

  22. Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13859–63.

    Article  CAS  Google Scholar 

  23. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature. 1999;402(6760):371–2.

    Google Scholar 

  24. Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 2011;334(6059):1144–7. https://doi.org/10.1126/science.1211878. Epub 2011 Oct 27. PMID:22033522.

  25. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod. 2000 Aug;63(2):582–90.

    Article  CAS  Google Scholar 

  26. Luo SM, Schatten H, Sun QY. Sperm mitochondria in reproduction: good or bad and where do they go? J Genet Genomics. 2013 Nov 20;40(11):549–56.

    Article  CAS  Google Scholar 

  27. Song WH, Ballard JW, Yi YJ, Sutovsky P. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. Biomed Res Int. 2014;2014:981867.

    PubMed  PubMed Central  Google Scholar 

  28. Zhou Q, Li H, Li H, Nakagawa A, Lin JL, Lee ES, Harry BL, Skeen-Gaar RR, Suehiro Y, William D, Mitani S, Yuan HS, Kang BH, Xue D. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science. 2016;353(6297):394–9. https://doi.org/10.1126/science.aaf4777. Epub 2016 Jun 23. PMID:27338704; PMCID:PMC5469823.

  29. Schwartz M, Vissing J. Paternal inheritance of mtDNA. N Engl J Med. 2002 Aug 22;347(8):576–80.

    Article  Google Scholar 

  30. Schwartz M, Vissing J. New patterns of inheritance in mitochondrial disease. Biochem Biophys Res Commun. 2003 Oct 17;310(2):247–51.

    Article  CAS  Google Scholar 

  31. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N. Heteroplasmic mtDNA mutations in normal and tumour cells. Nature. 2010 Mar 25;464(7288):610–4.

    Article  CAS  Google Scholar 

  32. Pyle A, Hudson G, Wilson IJ, Coxhead J, Smertenko T, Herbert M, Santibanez-Koref M, Chinnery PF. Extreme-depth re-sequencing of MtDNA finds no evidence of paternal transmission in humans. PLoS Genet. 2015 May 14;11(5):e1005040.

    Article  Google Scholar 

  33. Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, Wang X, Li Z, Dell S, Brown J, Chen SM, Chien YH, Hwu WL, Fan PC, Wong LJ, Atwal PS, Huang T. Biparental inheritance of MtDNA in humans. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13039–44.

    Article  CAS  Google Scholar 

  34. Wei W, Pagnamenta AT, Gleadall N, Sanchis-Juan A, Stephens J, Broxholme J, Tuna S, Odhams CA, Genomics England Research Consortium, NIHR BioResource, Fratter C, Turro E, Caulfield MJ, Taylor JC, Rahman S, Chinnery PF. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat Commun. 2020;11(1):1740. https://doi.org/10.1038/s41467-020-15336-3. Erratum in:Nat Commun. 2020;11(1):3741. PMID: 32269217; PMCID: PMC7142097.

  35. MITOMAP https://www.mitomap.org/MITOMAP

  36. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010 Jun;51(5):440-50. https://doi.org/10.1002/em.20586. PMID: 20544884.

  37. Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, Wallace DC. MITOMAP: a human mitochondrial genome database--2004 update. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D611–3.

    Article  CAS  Google Scholar 

  38. Mposhi A, Van der Wijst MG, Faber KN, Rots MG. Regulation of mitochondrial gene expression, the epigenetic enigma. Front Biosci (Landmark Ed). 2017 Mar 1;22:1099–113.

    Article  CAS  Google Scholar 

  39. Wallace DC. Genetics: Mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500. https://doi.org/10.1038/nature18902.

  40. Bonawitz ND, Shadel GS. Rethinking the mitochondrial theory of aging: the role of mitochondrial gene expression in lifespan determination. Cell Cycle. 2007;6(13):1574–8. https://doi.org/10.4161/cc.6.13.4457. Epub 2007. PMID:17603300.

  41. Larsson NG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79:683–706. https://doi.org/10.1146/annurev-biochem-060408-093701. PMID:20350166.

  42. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mtDNA polymerase. Nature. 2004 May 27;429(6990):417–23.

    Article  CAS  Google Scholar 

  43. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. https://doi.org/10.1038/nature09787. Epub 2011 Feb 9. Erratum in:Nature. 2011 Jul 14;475(7355):254. PMID:21307849; PMCID:PMC3741661.

  44. Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, Thompson JE, Melov S, Mocellin NJ, Kujoth GC, Prolla TA, Tarnopolsky MA. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4135–40.

    Article  CAS  Google Scholar 

  45. Craven L, Tang MX, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update. 2017b Sep 1;23(5):501–19.

    Article  CAS  Google Scholar 

  46. Vaiserman AM, Koliada AK, Jirtle RL. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin. 2017;10(1):38. https://doi.org/10.1186/s13072-017-0145-1. PMID:28750655; PMCID:PMC5531095.

  47. Sharma N, Pasala MS, Prakash A. MtDNA: epigenetics and environment. Environ Mol Mutagen. 2019 Oct;60(8):668–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am greatly indebted to Dr. Lilian Kimura and Ms. Vinícius Magalhães Borges for formatting and checking references and figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Célia Mingroni-Netto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mingroni-Netto, R.C. (2021). The Human Mitochondrial DNA. In: Haddad, L.A. (eds) Human Genome Structure, Function and Clinical Considerations. Springer, Cham. https://doi.org/10.1007/978-3-030-73151-9_10

Download citation

Publish with us

Policies and ethics