Skip to main content

Dynamic Formation Reshaping Based on Point Set Registration in a Swarm of Drones

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2021)

Abstract

This work focuses on the formation reshaping in an optimized manner in autonomous swarm of drones. Here, the two main problems are: 1) how to break and reshape the initial formation in an optimal manner, and 2) how to do such reformation while minimizing the overall deviation of the drones and the overall time, i.e. without slowing down. To address the first problem, we introduce a set of routines for the drones/agents to follow while reshaping to a secondary formation shape. And the second problem is resolved by utilizing the temperature function reduction technique, originally used in the point set registration process. The goal is to be able to dynamically reform the shape of multi-agent based swarm in near-optimal manner while going through narrow openings between, for instance obstacles, and then bringing the agents back to their original shape after passing through the narrow passage using point set registration technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ladd, G., Bland, G.: Non-military applications for small UAS platforms. In: AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference, p. 2046 (2009)

    Google Scholar 

  2. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)

    Article  Google Scholar 

  3. He, L., Bai, P., Liang, X., Zhang, J., Wang, W.: Feedback formation control of UAV swarm with multiple implicit leaders. Aerosp. Sci. Technol. 72, 327–334 (2018). http://www.sciencedirect.com/science/article/pii/S1270963816309816

  4. Campion, M., Ranganathan, P., Faruque, S.: A review and future directions of UAV swarm communication architectures. In: 2018 IEEE International Conference on Electro/Information Technology (EIT), pp. 0903–0908 (2018)

    Google Scholar 

  5. Tseng, C.M., Chau, C.K., Elbassioni, K.M., Khonji, M.: Flight tour planning with recharging optimization for battery-operated autonomous drones. CoRR, abs/1703.10049 (2017)

    Google Scholar 

  6. Yasin, J.N., Haghbayan, M.H., Heikkonen, J., Tenhunen, H., Plosila, J.: Formation maintenance and collision avoidance in a swarm of drones. In: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control. ISCSIC 2019, Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3386164.3386176

  7. Seo, J., Kim, Y., Kim, S., Tsourdos, A.: Collision avoidance strategies for unmanned aerial vehicles in formation flight. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2718–2734 (2017)

    Article  Google Scholar 

  8. Lin, Y., Saripalli, S.: Collision avoidance for UAVs using reachable sets. In: 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015, pp. 226–235. Institute of Electrical and Electronics Engineers Inc. (2015)

    Google Scholar 

  9. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M., Heikkonen, J., Tenhunen, H., Plosila, J.: Unmanned aerial vehicles (UAVs): collision avoidance systems and approaches. IEEE Access 8, 105139–105155 (2020)

    Article  Google Scholar 

  10. Payal, A., Singh, C.R.: A summarization of collision avoidance techniques for autonomous navigation of UAV. In: Jain, K., Khoshelham, K., Zhu, X., Tiwari, A. (eds.) Proceedings of UASG 2019, pp. 393–401. Springer, Cham (2020)

    Google Scholar 

  11. Choi, D., Lee, K., Kim, D.: Enhanced potential field-based collision avoidance for unmanned aerial vehicles in a dynamic environment (2020). https://arc.aiaa.org/doi/abs/10.2514/6.2020-0487

  12. Senanayake, M., Senthooran, I., Barca, J.C., Chung, H., Kamruzzaman, J., Murshed, M.: Search and tracking algorithms for swarms of robots: a survey. Robot. Auton. Syst. 75, 422–434 (2016). http://www.sciencedirect.com/science/article/pii/S0921889015001876

  13. Alexopoulos, A., Kandil, A., Orzechowski, P., Badreddin, E.: A comparative study of collision avoidance techniques for unmanned aerial vehicles. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1969–1974 (2013)

    Google Scholar 

  14. Prats, X., Delgado, L., Ramirez, J., Royo, P., Pastor, E.: Requirements, issues, and challenges for sense and avoid in unmanned aircraft systems. J. Aircr. 49(3), 677–687 (2012)

    Article  Google Scholar 

  15. Albaker, B.M., Rahim, N.A.: A survey of collision avoidance approaches for unmanned aerial vehicles. In: 2009 International Conference for Technical Postgraduates (TECHPOS), pp. 1–7 (2009)

    Google Scholar 

  16. Zhang, X., Liniger, A., Borrelli, F.: Optimization-based collision avoidance. arXiv preprint arXiv:1711.03449 (2017)

  17. Smith, N.E., Cobb, R., Pierce, S.J., Raska, V.: Optimal collision avoidance trajectories via direct orthogonal collocation for unmanned/remotely piloted aircraft sense and avoid operations. https://arc.aiaa.org/doi/abs/10.2514/6.2014-0966

  18. Ren, W.: Consensus based formation control strategies for multi-vehicle systems. In: 2006 American Control Conference, p. 6 (2006)

    Google Scholar 

  19. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, D., Sun, Z., Sun, W.: Leader-follower formation control without leader’s velocity information. Sci. China Inf. Sci. 57(9), 1–12 (2014)

    Article  MATH  Google Scholar 

  21. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.H., Heikkonen, J., Tenhunen, H., Plosila, J.: Navigation of autonomous swarm of drones using translational coordinates. In: Demazeau, Y., Holvoet, T., Corchado, J.M., Costantini, S. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection, pp. 353–362. Springer, Cham (2020)

    Google Scholar 

  22. Li, N.H., Liu, H.H.: Formation UAV flight control using virtual structure and motion synchronization. In: 2008 American Control Conference, pp. 1782–1787. IEEE (2008)

    Google Scholar 

  23. Dong, L., Chen, Y., Qu, X.: Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Procedia Eng. 137, 415–424 (2016). Green Intelligent Transportation System and Safety

    Article  Google Scholar 

  24. Lawton, J.R., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  25. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  26. Guo, P., Hu, W., Ren, H., Zhang, Y.: PCAOT: a Manhattan point cloud registration method towards large rotation and small overlap. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7912–7917 (2018)

    Google Scholar 

  27. Myronenko, A., Song, X.B.: Point-set registration: coherent point drift. CoRR abs/0905.2635 (2009). http://arxiv.org/abs/0905.2635

  28. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 2, pp. 44–51 (2000)

    Google Scholar 

Download references

Acknowledgment

This work has been supported in part by the Academy of Finland-funded research project 314048 and Nokia Foundation (Award No. 20200147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad N. Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasin, J.N. et al. (2021). Dynamic Formation Reshaping Based on Point Set Registration in a Swarm of Drones. In: Arai, K. (eds) Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-73100-7_42

Download citation

Publish with us

Policies and ethics