Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., Zimmermann, T.: Software engineering for machine learning: a case study. In: Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice, pp. 291–300. IEEE Press (2019)
Google Scholar
Baldock, K.C.R., Goddard, M.A., Hicks, D.M., Kunin, W.E., Mitschunas, N., Osgathorpe, L.M., Potts, S.G., Robertson, K.M., Scott, A.V., Stone, G.N., Vaughan, I.P., Memmott, J.: Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. Roy. Soc. B: Biol. Sci. 282(1803), 20142849 (2015)
Google Scholar
Biesmeijer, J.C., Seeley, T.D.: The use of waggle dance information by honeybees throughout their foraging careers. Behav. Ecol. Sociobiol. 59(1), 133–142 (2005)
CrossRef
Google Scholar
Bublitz, F.M., Oetomo, A., Sahu, K.S., Kuang, A., Fadrique, L.X., Velmovitsky, P.E., Nobrega, R.M., Morita, P.P.: Disruptive technologies for environment and health research: an overview of artificial intelligence, blockchain, and internet of things. Int. J. Environ. Res. Public Health 16(20), 3847 (2019)
CrossRef
Google Scholar
Celli, G., Maccagnani, B.: Honey bees as bioindicators of environmental pollution. Bull. Insectol. 56(1), 137–139 (2003)
Google Scholar
Dale, V.H., Beyeler, S.C.: Challenges in the development and use of ecological indicators. Ecol. Ind. 1(1), 3–10 (2001)
CrossRef
Google Scholar
de Palma, A., Kuhlmann, M., Roberts, S.P.M., Potts, S.G., Borger, L., Hudson, L.N., Lysenko, I., Newbold, T., Purvis, A.: Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52(6), 1567–1577 (2015)
CrossRef
Google Scholar
Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3), 94–100 (2016)
CrossRef
Google Scholar
Guetté, A., Gaüzère, P., Devictor, V., Jiguet, F., Godet, L.: Measuring the synanthropy of species and communities to monitor the effects of urbanization on biodiversity. Ecol. Ind. 79, 139–154 (2017)
CrossRef
Google Scholar
Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H.: More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS One 12(10), e0185809 (2017)
CrossRef
Google Scholar
Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., Carron, J.: Urban tree species classification using a worldview-2/3 and LiDAR data fusion approach and deep learning. Sensors 19(6), 1284 (2019)
CrossRef
Google Scholar
Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A.: A common pesticide decreases foraging success and survival in honeybees. Science 336, 348–350 (2012)
CrossRef
Google Scholar
Klein, A.-M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T.: Importance of pollinators in changing landscapes for world crops. Proc. Roy. Soc. B: Biol. Sci. 274(1608), 303–313 (2007)
CrossRef
Google Scholar
Lepczyk, C.A., Aronson, M.F.J., Evans, K.L., Goddard, M.A., Lerman, S.B., MacIvor, J.S.: Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 67(9), 799–807 (2017)
CrossRef
Google Scholar
Maksimović, Č., Kurian, M., Ardakanian, R.: Rethinking Infrastructure Design for Multi-use Water Services. Springer International Publishing (2015)
Google Scholar
Nilon, C.H., Aronson, M.F., Cilliers, S.S., Dobbs, C., Frazee, L.J., Goddard, M.A., O’Neill, K.M., Roberts, D., Stander, E.K., Werner, P., Winter, M., Yocom, K.P.: Planning for the future of urban biodiversity: a global review of city-scale initiatives. BioScience 67(4), 332–342 (2017)
CrossRef
Google Scholar
Nogueira, A.F., Ribeiro, J.C., Zenha-Rela, M.A., Craske, A.: Improving La Redoute’s CI/CD pipeline and DevOps processes by applying machine learning techniques. In: 11th International Conference on the Quality of Information and Communications Technology, pp. 282–286 (2018)
Google Scholar
Nürnberger, F., Keller, A., Härtel, S., Steffan-Dewenter, I.: Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Mol. Ecol. 28(15), 3602–3611 (2019)
CrossRef
Google Scholar
Porrini, C., Sabatini, A.G., Girotti, S., Ghini, S., Medrzycki, P., Grillenzoni, F., Bortolotti, L., Gattavecchia, E., Celli, G.: Honey bees and bee products as monitors of the environmental contamination. Apiacta 38(1), 63–70 (2003)
Google Scholar
Reeves, J.P., Knight, A.T., Strong, E.A., Heng, V., Neale, C., Cromie, R., Vercammen, A.: The application of wearable technology to quantify health and well-being co-benefits from urban wetlands. Front. Psychol. 10, 1840 (2019)
CrossRef
Google Scholar
Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Bengio, Y.: Tackling climate change with machine learning. arXiv preprint:1906.05433 (2019)
Google Scholar
Sangiovanni, M., Schouten, G., van den Heuvel, W.-J.: An IoT beehive network for monitoring urban biodiversity: vision, method, and architecture. In: Communications in Computer and Information Science. Springer International Publishing (2020)
Google Scholar
Savard, J.-P.L., Clergeau, P., Mennechez, G.: Biodiversity concepts and urban ecosystems. Landscape Urban Plan. 48(3–4), 131–142 (2000)
CrossRef
Google Scholar
Sebba, R.: The landscapes of childhood: the reflection of childhood’s environment in adult memories and in children’s attitudes. Environ. Behav. 23(4), 395–422 (1991)
CrossRef
Google Scholar
Sedjo, R.A.: Perspectives on biodiversity: valuing its role in an everchanging world. J. Forestry 98(2), 45 (2000)
Google Scholar
Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)
Google Scholar
Sinha, A., Sengupta, T., Alvarado, R.: Interplay between technological innovation and environmental quality: formulating the SDG policies for next 11 economies. J. Clean. Prod. 242, 118549 (2020)
CrossRef
Google Scholar
van den Heuvel, W.-J., Tamburri, D.A.: Model-driven ML-Ops for intelligent enterprise applications: vision, approaches and challenges. In: Business Modeling and Software Design, pp. 169–181. Springer International Publishing (2020)
Google Scholar
Wainwright, J., Mulligan, M.: Environmental Modelling: Finding Simplicity in Complexity. Wiley, Hoboken (2013)
CrossRef
Google Scholar
Wario, F., Wild, B., Rojas, R., Landgraf, T.: Automatic detection and decoding of honey bee waggle dances. PLoS ONE 12(12), e0188626 (2017)
CrossRef
Google Scholar
Zimmermann, B., Kohler, A.: Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS ONE 9(4), (2014)
CrossRef
Google Scholar