Skip to main content

IoT Beehives and Open Data to Gauge Urban Biodiversity

  • 832 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1363)

Abstract

Environmental sustainability is a key element of modern society. It has received global attention in recent years, both at scientific and administrative levels. Despite the scrupulous studies addressing this theme, many issues remain largely unresolved. A (big) data and AI approach is a promising alternative for tackling societal or environmental problems that are hard to grasp. We apply this approach to assess urban biodiversity. More specifically, the concept of intelligent beehives is introduced. This concept encapsulates and leverages biotic elements, such as harnessing bees as biomonitoring agents, with technologies like IoT instrumentation and AI. Together they comprise the data-driven services that shape the backbone of a real-time environmental dashboard. In this vision paper, our solution architecture and prototypization for such service-enabled beehives are sketched and discussed. We focus on the role of the IoT beehive network and open data for predictive modelling of biodiversity and argue how MLOps practices support a transformative process for creating awareness and maintaining or even increasing urban biodiversity.

Keywords

  • Urban biodiversity
  • IoT Beehive
  • Open data
  • MLOps and Stratified Architecture

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-73100-7_17
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-73100-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    https://ipbes.net/global-assessment-report-biodiversity-ecosystem-services.

  2. 2.

    https://www.un.org/sustainabledevelopment/news/communications-material.

  3. 3.

    Note that pollinators directly affect 35% of the world’s food crop production [13].

  4. 4.

    This is an extended version of an earlier concept presented at SummerSoC 2020 [22].

  5. 5.

    http://melixa.eu/en/.

  6. 6.

    https://beep.nl/home-english.

References

  1. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., Zimmermann, T.: Software engineering for machine learning: a case study. In: Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice, pp. 291–300. IEEE Press (2019)

    Google Scholar 

  2. Baldock, K.C.R., Goddard, M.A., Hicks, D.M., Kunin, W.E., Mitschunas, N., Osgathorpe, L.M., Potts, S.G., Robertson, K.M., Scott, A.V., Stone, G.N., Vaughan, I.P., Memmott, J.: Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. Roy. Soc. B: Biol. Sci. 282(1803), 20142849 (2015)

    Google Scholar 

  3. Biesmeijer, J.C., Seeley, T.D.: The use of waggle dance information by honeybees throughout their foraging careers. Behav. Ecol. Sociobiol. 59(1), 133–142 (2005)

    CrossRef  Google Scholar 

  4. Bublitz, F.M., Oetomo, A., Sahu, K.S., Kuang, A., Fadrique, L.X., Velmovitsky, P.E., Nobrega, R.M., Morita, P.P.: Disruptive technologies for environment and health research: an overview of artificial intelligence, blockchain, and internet of things. Int. J. Environ. Res. Public Health 16(20), 3847 (2019)

    CrossRef  Google Scholar 

  5. Celli, G., Maccagnani, B.: Honey bees as bioindicators of environmental pollution. Bull. Insectol. 56(1), 137–139 (2003)

    Google Scholar 

  6. Dale, V.H., Beyeler, S.C.: Challenges in the development and use of ecological indicators. Ecol. Ind. 1(1), 3–10 (2001)

    CrossRef  Google Scholar 

  7. de Palma, A., Kuhlmann, M., Roberts, S.P.M., Potts, S.G., Borger, L., Hudson, L.N., Lysenko, I., Newbold, T., Purvis, A.: Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52(6), 1567–1577 (2015)

    CrossRef  Google Scholar 

  8. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3), 94–100 (2016)

    CrossRef  Google Scholar 

  9. Guetté, A., Gaüzère, P., Devictor, V., Jiguet, F., Godet, L.: Measuring the synanthropy of species and communities to monitor the effects of urbanization on biodiversity. Ecol. Ind. 79, 139–154 (2017)

    CrossRef  Google Scholar 

  10. Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H.: More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS One 12(10), e0185809 (2017)

    CrossRef  Google Scholar 

  11. Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., Carron, J.: Urban tree species classification using a worldview-2/3 and LiDAR data fusion approach and deep learning. Sensors 19(6), 1284 (2019)

    CrossRef  Google Scholar 

  12. Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A.: A common pesticide decreases foraging success and survival in honeybees. Science 336, 348–350 (2012)

    CrossRef  Google Scholar 

  13. Klein, A.-M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T.: Importance of pollinators in changing landscapes for world crops. Proc. Roy. Soc. B: Biol. Sci. 274(1608), 303–313 (2007)

    CrossRef  Google Scholar 

  14. Lepczyk, C.A., Aronson, M.F.J., Evans, K.L., Goddard, M.A., Lerman, S.B., MacIvor, J.S.: Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 67(9), 799–807 (2017)

    CrossRef  Google Scholar 

  15. Maksimović, Č., Kurian, M., Ardakanian, R.: Rethinking Infrastructure Design for Multi-use Water Services. Springer International Publishing (2015)

    Google Scholar 

  16. Nilon, C.H., Aronson, M.F., Cilliers, S.S., Dobbs, C., Frazee, L.J., Goddard, M.A., O’Neill, K.M., Roberts, D., Stander, E.K., Werner, P., Winter, M., Yocom, K.P.: Planning for the future of urban biodiversity: a global review of city-scale initiatives. BioScience 67(4), 332–342 (2017)

    CrossRef  Google Scholar 

  17. Nogueira, A.F., Ribeiro, J.C., Zenha-Rela, M.A., Craske, A.: Improving La Redoute’s CI/CD pipeline and DevOps processes by applying machine learning techniques. In: 11th International Conference on the Quality of Information and Communications Technology, pp. 282–286 (2018)

    Google Scholar 

  18. Nürnberger, F., Keller, A., Härtel, S., Steffan-Dewenter, I.: Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Mol. Ecol. 28(15), 3602–3611 (2019)

    CrossRef  Google Scholar 

  19. Porrini, C., Sabatini, A.G., Girotti, S., Ghini, S., Medrzycki, P., Grillenzoni, F., Bortolotti, L., Gattavecchia, E., Celli, G.: Honey bees and bee products as monitors of the environmental contamination. Apiacta 38(1), 63–70 (2003)

    Google Scholar 

  20. Reeves, J.P., Knight, A.T., Strong, E.A., Heng, V., Neale, C., Cromie, R., Vercammen, A.: The application of wearable technology to quantify health and well-being co-benefits from urban wetlands. Front. Psychol. 10, 1840 (2019)

    CrossRef  Google Scholar 

  21. Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Bengio, Y.: Tackling climate change with machine learning. arXiv preprint:1906.05433 (2019)

    Google Scholar 

  22. Sangiovanni, M., Schouten, G., van den Heuvel, W.-J.: An IoT beehive network for monitoring urban biodiversity: vision, method, and architecture. In: Communications in Computer and Information Science. Springer International Publishing (2020)

    Google Scholar 

  23. Savard, J.-P.L., Clergeau, P., Mennechez, G.: Biodiversity concepts and urban ecosystems. Landscape Urban Plan. 48(3–4), 131–142 (2000)

    CrossRef  Google Scholar 

  24. Sebba, R.: The landscapes of childhood: the reflection of childhood’s environment in adult memories and in children’s attitudes. Environ. Behav. 23(4), 395–422 (1991)

    CrossRef  Google Scholar 

  25. Sedjo, R.A.: Perspectives on biodiversity: valuing its role in an everchanging world. J. Forestry 98(2), 45 (2000)

    Google Scholar 

  26. Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)

    Google Scholar 

  27. Sinha, A., Sengupta, T., Alvarado, R.: Interplay between technological innovation and environmental quality: formulating the SDG policies for next 11 economies. J. Clean. Prod. 242, 118549 (2020)

    CrossRef  Google Scholar 

  28. van den Heuvel, W.-J., Tamburri, D.A.: Model-driven ML-Ops for intelligent enterprise applications: vision, approaches and challenges. In: Business Modeling and Software Design, pp. 169–181. Springer International Publishing (2020)

    Google Scholar 

  29. Wainwright, J., Mulligan, M.: Environmental Modelling: Finding Simplicity in Complexity. Wiley, Hoboken (2013)

    CrossRef  Google Scholar 

  30. Wario, F., Wild, B., Rojas, R., Landgraf, T.: Automatic detection and decoding of honey bee waggle dances. PLoS ONE 12(12), e0188626 (2017)

    CrossRef  Google Scholar 

  31. Zimmermann, B., Kohler, A.: Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS ONE 9(4), (2014)

    CrossRef  Google Scholar 

Download references

Acknowledgment

The authors thank Michiel Groenemeijer for his valuable and creative beehive design contributions and his dedicated beekeeping activities for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Schouten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Schouten, G., Sangiovanni, M., van den Heuvel, WJ. (2021). IoT Beehives and Open Data to Gauge Urban Biodiversity. In: Arai, K. (eds) Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-73100-7_17

Download citation