Skip to main content

Ganoderma lucidum: King of Mushroom

  • Chapter
  • First Online:
Non-Timber Forest Products

Abstract

Ganoderma lucidum is a species of macrofungi that grows on dead and deciduous trees. It is one of basidiomycetes rot fungi used to promote excellent health and longevity. The common name of this mushroom is Lingzhi or Reishi mushroom. G. lucidum is an important natural source of myco-compounds that are used to treat different diseases for numerous years. It has many bioactive components, including polysaccharides and triterpenes; thus; it is used in the treatment of cancer and the regulation of the human immune system. Recently, this mushroom has been used as an eco-friendly reducing agent in the green mycosynthesis of metallic nanoparticles. Moreover, G. lucidum was used in the pharmacological application, especially as antidiabetic, antihypertensive, antiviral, cardioprotective, hepatoprotective, antioxidant, immune-modulatory, and anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Hadi SY, Owaid MN, Rabeea MA, Abdul Aziz A, Jameel MS (2020) Rapid mycosynthesis and characterization of phenols-capped crystal gold nanoparticles from Ganoderma applanatum, Ganodermataceae. Biocatal Agric Biotechnol:101683. https://doi.org/10.1016/j.bcab.2020.101683. Elsevier Ltd

  • Anchan S, Pai S, Sridevi H, Varadavenkatesan T, Vinayagam R, Selvaraj R (2019) Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. Biocatal Agric Biotechnol 20:101251. https://doi.org/10.1016/j.bcab.2019.101251. Elsevier Ltd

    Article  Google Scholar 

  • Aygün A, Özdemir S, Gülcan M, Cellat K, Şen F (2020) Synthesis and characterization of reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal 178:112970. https://doi.org/10.1016/j.jpba.2019.112970

    Article  CAS  PubMed  Google Scholar 

  • Bae AH, Numata M, Yamada S, Shinkai S (2007) New approach to preparing one-dimensional Au nanowires utilizing a helical structure constructed by schizophyllan. New J Chem 31(5):618–622. https://doi.org/10.1039/b615757b

    Article  CAS  Google Scholar 

  • Bal C (2019) Antioxidant and antimicrobial capacities of Ganoderma lucidum. J Bacteriol Mycol 7(1):5–7. https://doi.org/10.15406/jbmoa.2019.07.00232

    Article  Google Scholar 

  • Bharadwaj S, Lee KE, Dwivedi VD, Yadava U, Panwar A, Lucas SJ, Pandey A, Kang SG (2019) Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-55723-5

    Article  CAS  Google Scholar 

  • Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A (2013) Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B Biol 125:63–69. https://doi.org/10.1016/j.jphotobiol.2013.05.002. Elsevier BV

    Article  CAS  Google Scholar 

  • Cardoso BK, Linde GA, Colauto NB, do Valle JS (2018) Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatal Agric Biotechnol 16:558–563. https://doi.org/10.1016/j.bcab.2018.09.026. Elsevier Ltd

    Article  Google Scholar 

  • Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518. https://doi.org/10.1016/j.bcab.2020.101518. Elsevier Ltd

    Article  Google Scholar 

  • Chang H, Huh Y, Soeun P, Lee S, Song I (2007) Thermophile mushroom cultivation in Cambodia: Spawn production and development of a new substrate, acacia tree sawdust. pp 1–5

    Google Scholar 

  • Dandapat S, Kumar M, Ranjan R, Sinha MP (2019) Acute and sub-acute toxicity of Ganoderma applanatum (pres.) pat. extract mediated silver nanoparticles on rat. Not Sci Biol 11(3):351–363. https://doi.org/10.15835/nsb11310473

    Article  CAS  Google Scholar 

  • David OM, Fagbohun ED, Oluyege AO, Adegbuyi A (2012) Antimicrobial activity and physicochemical properties of oils from tropical macrofungi. J Yeast Fungal Res 3(1):1–6. https://doi.org/10.5897/JYFR11.024

    Article  CAS  Google Scholar 

  • Dheyab MA, Abdul Aziz A, Jameel MS, Noqta OA, Mehrdel B (2020) Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Chinese J Phys 64:305–325. https://doi.org/10.1016/j.cjph.2019.11.014. Elsevier BV

    Article  CAS  Google Scholar 

  • Dreher D, Junod A (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A(1):30–38

    Article  CAS  Google Scholar 

  • El-Batal AI, Elkenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles $. Biotechnol Rep 5:31–39. https://doi.org/10.1016/j.btre.2014.11.001. Elsevier BV

    Article  Google Scholar 

  • El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49:1651–1657

    Article  CAS  Google Scholar 

  • Erkel EI (2009) The effect of different substrate mediums on yield of Ganoderma lucidum (Fr.) Karst. J Food. Agric Environ 7(October):841–844

    Google Scholar 

  • Eskandari-Nojedehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J (2018) Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: Physico-chemical characteristics and antifungal activity studies. Green Process Synth 7(1):38–47. https://doi.org/10.1515/gps-2017-0004

    Article  CAS  Google Scholar 

  • Eskandari-Nojehdehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J (2016) Optimization of processing parameters in green synthesis of gold nanoparticles using microwave and edible mushroom (Agaricus bisporus) extract and evaluation of their antibacterial activity. Nanotechnol Rev 5(6):537–548. https://doi.org/10.1515/ntrev-2016-0064

    Article  CAS  Google Scholar 

  • Fang QH, Zhong JJ (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem 37(7):769–774

    Article  CAS  Google Scholar 

  • Ganesh M, Lee SG, Jayaprakash J, Mohankumar M, Jang HT (2019) Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity. Biocatal Agric Biotechnol 19:101129. https://doi.org/10.1016/j.bcab.2019.101129. Elsevier Ltd

    Article  Google Scholar 

  • González A, Atienza V, Montoro A, Soriano JM (2020) Use of Ganoderma lucidum (Ganodermataceae, basidiomycota) as radioprotector. Nutrients 12(4):1–9. https://doi.org/10.3390/nu12041143

    Article  CAS  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413. https://doi.org/10.2147/IJN.S51881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heleno SA, Ferreira ICFR, Esteves AP, Ćirić A, Glamočlija J, Martins A, Soković M, Queiroz MJRP (2013) Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem Toxicol 58:95–100. https://doi.org/10.1016/j.fct.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  • Hsieh C, Yang F (2004) Reusing soy residue for the solid-state fermentation of Ganoderma lucidum. Bioresour Technol 91(1):105–109

    Article  CAS  Google Scholar 

  • Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, Moshafi MH, Ameri A, Rahimi HR, Forootanfar H (2018) Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatal Agric Biotechnol 15:245–253. https://doi.org/10.1016/j.bcab.2018.06.014

    Article  Google Scholar 

  • Jiang J, Slivova V, Valachovicova T, Harvey K, Sliva D (2004) Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol 24(5):1093–1099. https://doi.org/10.3892/ijo.24.5.1093

    Article  CAS  PubMed  Google Scholar 

  • Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran LSP (2019) Ganoderma applanatum-mediated green synthesis of silver nanoparticles: structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Arab J Chem King Saud Univ 12(7):1108–1120. https://doi.org/10.1016/j.arabjc.2017.12.002

    Article  CAS  Google Scholar 

  • Kumar DSRS, Senthilkumar P, Surendran L, Sudhagar B (2017) Ganoderma lucidum-oriental mushroom mediated synthesis of gold nanoparticles conjugated with doxorubicin and evaluation of its anticancer potential on human breast cancer Mcf-7/Dox cells. Int J Pharm Pharm Sci 9(9):267. https://doi.org/10.22159/ijpps.2017v9i9.20093

    Article  CAS  Google Scholar 

  • Liang Z, Yuan Z, Guo J, Wu J, Yi J, Deng J, Shan Y (2019) Ganoderma lucidum polysaccharides prevent palmitic acid-evoked apoptosis and autophagy in intestinal porcine epithelial cell line via restoration of mitochondrial function and regulation of MAPK and AMPK/Akt/mTOR signaling pathway. Int J Mol Sci 20(3). https://doi.org/10.3390/ijms20030478

  • Liu Y, Shen J, Xia Y, Zhang J, Park H (2012) The polysaccharides from Ganoderma lucidum: Are they always inhibitors on human hepatocarcinoma cells? Carbohydr Polym 90(3):1210–1215. https://doi.org/10.1016/j.carbpol.2012.06.043. Elsevier Ltd

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364

    Article  CAS  Google Scholar 

  • Ma B, Ren W, Zhou Y, Ma J, Ruan Y, Wen C (2011) Triterpenoids from the spores of Ganoderma lucidum. N Am J Med Sci 3(11):495–498. https://doi.org/10.4297/najms.2011.3495

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins A (2017) The numbers behind mushroom biodiversity. In: ICFR F, Morales P, Barros L (eds) Wild plants, mushrooms nuts functional food properties applications. John Wiley & Sons, Ltd., Hoboken, pp 15–64

    Google Scholar 

  • Maszlavér P (2008) Cultivation possibilities for production of reishi Ganoderma lucidum (curt.: fr.) karst in Hungary. Department of Vegetable and Mushroom Growing, Corvinus University of Budapest, PhD Thesis, Budapest.

    Google Scholar 

  • Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23(3):1–18. https://doi.org/10.3390/molecules23030655

    Article  CAS  Google Scholar 

  • Nallapan Maniyam M, Hari M, Yaacob NS (2020) Enhanced methylene blue decolourization by Rhodococcus strain UCC 0003 grown in banana peel agricultural waste through response surface methodology. Biocatal Agric Biotechnol 23:101486. https://doi.org/10.1016/j.bcab.2019.101486. Elsevier Ltd

    Article  Google Scholar 

  • Nandhini NT, Rajeshkumar S, Mythili S (2019) The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal Agric Biotechnol 19:101138. https://doi.org/10.1016/j.bcab.2019.101138. Elsevier Ltd

    Article  Google Scholar 

  • Narayanan KB, Park HH, Han SS (2015) Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere 21:169–175. https://doi.org/10.1016/j.chemosphere.2015.06.101

    Article  CAS  Google Scholar 

  • Narendrakumar V, Kumar VR, Karthick V, Kumar CMV (2020) Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatal Agric Biotechnol:101627. https://doi.org/10.1016/j.bcab.2020.101627. Elsevier Ltd

  • Naveen Kumar C, Jayalakshmi G, Chidambaram R, Srikumar R (2017) In-vitro evaluation of antifungal activity of Ganoderma lucidum against the biofilm producing candida species. Indian J Pharm Educ Res 51(4):S623–S630. https://doi.org/10.5530/ijper.51.4s.91

    Article  CAS  Google Scholar 

  • Naveenkumar C, Swathi S, Jayalakshmi G, Chidambaram R, Srikumar R (2018) Screening of antifungal activity of Ganoderma lucidum extract against medically important fungi. Indian J Public Heal Res Dev 9(1):269–272. https://doi.org/10.5958/0976-5506.2018.00050.5

    Article  Google Scholar 

  • Obaid AL-Jumaili MM, Al-Dulaimi FKY, Ajeel MA (2020) The role of Ganoderma lucidum uptake on some hematological and immunological response in patients with coronavirus (COVID-19). Syst Rev Pharm 11(8):537–541. https://doi.org/10.31838/srp.2020.8.76

    Article  Google Scholar 

  • Ofodile LN, Uma NU, Kokubun T, Grayer RJ, Ogundipe OT, Simmonds MSJ (2005) Antimicrobial activity of some Ganoderma species from Nigeria. Phyther Res 19(4):310–313. https://doi.org/10.1002/ptr.1641

    Article  CAS  Google Scholar 

  • Owaid MN (2019) Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: review. Environ Nanotechnol Monit Manag 12:100256. https://doi.org/10.1016/j.enmm.2019.100256. Elsevier

    Article  Google Scholar 

  • Owaid MN, Ibraheem IJ (2017) Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed 9(1):5–23. https://doi.org/10.1515/ejnm-2016-0016

    Article  CAS  Google Scholar 

  • Owaid MN, Al-Saeedi SSS, Abed IA (2017) Biosynthesis of gold nanoparticles using yellow oyster mushroom Pleurotus cornucopiae var. citrinopileatus. Environ Nanotechnology. Monit Manag 8:157–162. https://doi.org/10.1016/j.enmm.2017.07.004

    Article  Google Scholar 

  • Owaid MN, Rabeea MA, Abdul Aziz A, Jameel MS, Dheyab MA (2019) Mushroom-assisted synthesis of triangle gold nanoparticles using the aqueous extract of fresh Lentinula edodes (shiitake), Omphalotaceae. Environ Nanotechnol Monit Manag 12:100270. https://doi.org/10.1016/j.enmm.2019.100270. Elsevier

    Article  Google Scholar 

  • Peksen A, Yakupoglu ÆG (2009) Tea waste as a supplement for the cultivation of Ganoderma lucidum. World J Microbiol Biotchnol 25:611–618. https://doi.org/10.1007/s11274-008-9931-z

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au , Ag and Au – Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381. https://doi.org/10.1016/j.saa.2009.02.037

    Article  CAS  PubMed  Google Scholar 

  • Prasad Y, Wesely WEG (2008) Antibacterial activity of the bio-multidrug (Ganoderma lucidum) on multidrug resistant staphylococcus aureus (MRSA). Adv Biotech 2008:1–16

    Google Scholar 

  • Quereshi S, Pandey AK, Sandhu SS (2010) Evaluation of antibacterial activity of different Ganoderma lucidum extracts. People’s J Sci Res 3(1):9–13

    Google Scholar 

  • Rabeea MA, Owaid MN, Abdul Aziz A, Jameel MS, Dheyab MA (2020) Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue. J Environ Chem Eng 8:103841. https://doi.org/10.1016/j.jece.2020.103841. Elsevier BV

    Article  CAS  Google Scholar 

  • Raman J, Lakshmanan H, John P, Zhijian C, Periasamy V, David P, Naidu M, Sabaratnam V (2015) Neurite outgrowth stimulatory effects of myco synthesized auNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (Pc-12) cells. Int J Nanomedicine 10:5853–5863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Ara M, Jahan A, Das KK, Munshi SK, Noor R (2015) Artificial cultivation of Ganoderma lucidum (Reishi Medicinal Mushroom) using different sawdusts as substrates. Am J Biosci 3(5):178–182. https://doi.org/10.11648/j.ajbio.20150305.13

    Article  CAS  Google Scholar 

  • Roy DN, Azad AK, Sultana F, Anisuzzaman ASM (2016) In-vitro antimicrobial activity of ethyl acetate extract of two common edible mushrooms. J Pharmacol 5(2):79–82

    Google Scholar 

  • Saipreethi P, Manian R (2019) Probing the biomolecular targets of azo colorant carcinogens towards purified wetland peroxidase-computational cum in vitro validation. Biocatal Agric Biotechnol 19:101127. https://doi.org/10.1016/j.bcab.2019.101127

    Article  Google Scholar 

  • Samarakoon KW, Lee J, De SED, Kim E, Wijesundara RLC, Lakmal HHC, Jeon Y (2013) Bioactivity evaluation of organic solvent extractions Ganoderma lucidum: a Sri Lankan basidiomycete. J Natl Sci Foundation Sri Lanka 41(3):249–257

    Article  Google Scholar 

  • Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS, Bisen PS (2009) Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol 10:717–742

    Article  CAS  Google Scholar 

  • Sarkar J, Kalyan S, Laskar A, Chattopadhyay D, Acharya K (2013) Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quel. Mater Lett 92:313–316. https://doi.org/10.1016/j.matlet.2012.10.130. Elsevier

    Article  CAS  Google Scholar 

  • Seetharaman P, Chandrasekaran R, Gnanasekar S, Mani I, Sivaperumal S (2017) Biogenic gold nanoparticles synthesized using Crescentia cujete L. and evaluation of their different biological activities. Biocatal Agric Biotechnol 11:75–82. https://doi.org/10.1016/j.bcab.2017.06.004. Elsevier Ltd

    Article  Google Scholar 

  • Sen I, Maity K, Islam SS (2013) Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym 91(2):518–528. https://doi.org/10.1016/j.carbpol.2012.08.058. Elsevier Ltd

    Article  CAS  PubMed  Google Scholar 

  • Shaher F, Qiu H, Wang S, Hu Y, Wang W, Zhang Y, Wei Y, Al-Ward H, Abdulghani MAM, Alenezi SK, Baldi S, Zhou S (2020) Associated targets of the antioxidant cardioprotection of Ganoderma lucidum in diabetic cardiomyopathy by using open targets platform: a systematic review. Biomed Res Int 2020. https://doi.org/10.1155/2020/7136075

  • Sohretoglu D, Huang S (2018) Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Agents Med Chem 18(5):667–674. https://doi.org/10.2174/1871520617666171113121246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar S, Sivaprakasam E, Balakumar R, Kavitha D (2011) Evaluation of antibacterial and antifungal activity of Ganoderma lucidum (curtis) p. karst fruit bodies extracts. World J Sci Technol 1(6):8–11

    Google Scholar 

  • Vetchinkina EP, Loshchinina EA, Burov AM, Nikitina VE (2013) Bioreduction of gold (iii) ions from hydrogen tetrachloaurate to the elementary state by edible cultivated medicinal xylotrophic Basidiomycetes belonging to various systematic groups and molecular mechanisms of gold nanoparticles biological synthesis. Sci Pract J Heal Life Sci 4:51–56

    Google Scholar 

  • Wagner R, Mitchell DA, Sassaki GL, Amazonas MALA, Berovic M (2003) Current techniques for the cultivation of Ganoderma lucidum for the production of bimass, ganoderic acid and polysaccharides. Food Technol Biotechnol 41(4):371–382

    CAS  Google Scholar 

  • Wang J, Cao B, Zhao H, Feng J (2017) Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis 8(6):691–707. https://doi.org/10.14336/AD.2017.0410

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang B, Zhou L, Wang X, Veeraraghavan VP, Mohan SK, Xin F (2020) Ganoderma lucidum put forth anti-tumor activity against PC-3 prostate cancer cells via inhibition of Jak-1/STAT-3 activity. Saudi. J Biol Sci 27(10):2632–2637. https://doi.org/10.1016/j.sjbs.2020.05.044. The Authors

    Article  CAS  Google Scholar 

  • Yang FC, Liau CB (1998) Effect of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng 19:233–236

    Google Scholar 

  • Yoon SY, Eo SK, Kim YS, Lee CK, Han SS (1994) Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res 17(6):438–442. https://doi.org/10.1007/BF02979122

    Article  CAS  PubMed  Google Scholar 

  • You B-J, Lee H-Z, Chung K-R, Lee M-H, Huang M-J, Tien N, Chan C-W, Kuo Y-H (2012) Enhanced production of ganoderic acids and cytotoxicity of Ganoderma lucidum using solid-medium culture. Biosci Biotechnol Biochem 76(8):1529–1534. https://doi.org/10.1271/bbb.120270

    Article  CAS  PubMed  Google Scholar 

  • Yu N, Huang Y, Jiang Y, Zou L, Liu X, Liu S, Chen F, Luo J, Zhu Y (2020) Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice. Oxid Med Cell Longev 2020. https://doi.org/10.1155/2020/9894037

  • Yuen JWM, Gohel MDI (2005) Anticancer effects of Ganoderma lucidum: a review of scientific evidence John. Nutr Cancer 53(1):11–17. https://doi.org/10.1207/s15327914nc5301

    Article  CAS  PubMed  Google Scholar 

  • Zhang QH, Hu QX, Xie D, Chang B, Miao HG, Wang YG, Liu DZ, Li XD (2019) Ganoderma lucidum exerts an anticancer effect on human osteosarcoma cells via suppressing the Wnt/β-catenin signaling pathway. Integr Cancer Ther 18. https://doi.org/10.1177/1534735419890917

  • Zhao X, Zhou D, Liu Y, Li C, Zhao X, Li Y, Li W (2018) Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Mol Med Rep 17(1):147–157. https://doi.org/10.3892/mmr.2017.7904

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nadhim Owaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owaid, M.N. (2021). Ganoderma lucidum: King of Mushroom. In: Husen, A., Bachheti, R.K., Bachheti, A. (eds) Non-Timber Forest Products. Springer, Cham. https://doi.org/10.1007/978-3-030-73077-2_14

Download citation

Publish with us

Policies and ethics