Skip to main content

MicroRNAs as Targets of Dietary Phytochemicals in Obesity and Cancer

  • Chapter
  • First Online:
Dietary Phytochemicals

Abstract

MicroRNAs (miRNAs) are minute regulatory single stranded noncoding molecules (about 22 nucleotides) of ribonucleic acids that influence expression of gene all the way through posttranscription. They are known to control different biological processes for example differentiation of cell, survival, development, migration, their dysregulation and death of cells. There are excess of over 500 miRNAs with different roles in the human body. In this chapter, effort was made to discuss the potential roles of miRNA in obesity and cancer and how dietary phytochemicals modulate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, J., Lee, H., Jung, C. H., & Ha, T. (2012). Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Molecular Nutrition & Food Research, 56, 1665–1674.

    Article  CAS  Google Scholar 

  • Ambati, S., Yang, J. Y., Rayalam, S., Park, H. J., Della-Fera, M. A., & Baile, C. A. (2009). Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis. Phytotherapy Research, 23, 513–518.

    Article  CAS  PubMed  Google Scholar 

  • Asher, G. N., & Spelman, K. (2013). Clinical utility of curcumin extract. Alternative Therapies in Health and Medicine, 19(2), 20–22.

    PubMed  Google Scholar 

  • Athar, M., Back, J. H., Tang, X., et al. (2007). Resveratrol: A review of preclinical studies for human cancer prevention. Toxicology and Applied Pharmacology, 224(3), 274–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, T., Dong, D. S., & Pei, L. (2014). Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncology Reports, 31(5), 2293–2297.

    Article  CAS  PubMed  Google Scholar 

  • Berndt, S. I., Gustafsson, S., Mägi, R., Ganna, A., Wheeler, E., Feitosa, M. F., Justice, A. E., Monda, K. L., Croteau-Chonka, D. C., Day, F. R., et al. (2013). Genome-wide meta-analysis identifies 11 new loci for anthropometrictraits and provides insights into genetic architecture. Nature Genetics, 45, 501–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj, A., Singh, S., & Singh, A. P. (2010). MicroRNA-based cancer therapeutics: Big hope from small RNAs. Molecular and Cellular Pharmacology, 2, 213–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishayee, A. (2009). Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prevention Research, 2, 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Bishayee, A., Politis, T., & Darvesh, A. S. (2010). Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treatment Reviews, 36(1), 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Block, G., Patterson, B., & Subar, A. (1992). Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutrition and Cancer, 18(1), 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Boesch-Saadatmandi, C., Loboda, A., Wagner, A. E., Stachurska, A., Jozkowicz, A., Dulak, J., Döring, F., Wolram, S., & Rimbach, G. (2011). Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155. The Journal of Nutritional Biochemistry, 22, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Boesch-Saadatmandi, C., Wagner, A. E., Wolffram, S., & Rimbach, G. (2012). Effect of quercetin on inflammatory gene expression in mice liver in vivo – Role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacological Research, 65, 523–530.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., Yu, X., Hu, S., & Yu, J. (2009). A brief review on the mechanisms of mirna regulation. Genomics, Proteomics & Bioinformatics, 7, 147–154.

    Article  CAS  Google Scholar 

  • Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6, 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Chiyomaru, T., Yamamura, S., Fukuhara, S., et al. (2013). Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One, 8(3), e58929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumortier, O., Hinault, C., & Van Obberghen, E. (2013). MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metabolism, 18, 312–324.

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Posovszky, P., Kukulus, V., Zulet, M. A., Debatin, K. M., & Wabitsch, M. (2007). Conjugated linoleic acids promote human fat cell apoptosis. Hormone and Metabolic Research, 39, 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, R. I., & Shiekhattar, R. (2005). Microrna biogenesis and cancer. Cancer Research, 65, 3509–3512.

    Article  CAS  PubMed  Google Scholar 

  • Haslam, D. W., & James, W. P. T. (2005). Obesity. Lancet, 366, 1197–1209.

    Article  PubMed  Google Scholar 

  • Huang, B., Yuan, H. D., Kim, D. Y., Quan, H. Y., & Chung, S. H. (2011). Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of Peroxisome Proliferator-Activated Receptor- (PPAR) and AMP-Activated Protein Kinase (AMPK) Pathways. Journal of Agricultural and Food Chemistry, 59, 3666–3673.

    Article  CAS  PubMed  Google Scholar 

  • Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, T. I., Park, J. W., Ahn, J., Jung, C. H., & Ha, T. Y. (2013). Fisetin protects against hepatosteatosis in mice by inhibiting mir-378. Molecular Nutrition & Food Research, 57, 1931–1937.

    Article  CAS  Google Scholar 

  • Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G., & Liu, Y. (2009). miR2Disease: A manuallycurated database for microRNA deregulation in human disease. Nucleic Acids Research, 37, D98–D104.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S. M., Grosshans, H., Shingara, J., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Joven, J., Espinel, E., Rull, A., Aragones, G., Rodriguez-Gallego, E., Camps, J., Micol, V., Herranz-Lopez, M., Menendez, J. A., Borras, I., et al. (2012). Plantderived polyphenols regulate expression of miRNA paralogs miR- 103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochimica et Biophysica Acta, 1820, 894–899.

    Article  CAS  PubMed  Google Scholar 

  • Kang, N. H., Mukherjee, S., & Yun, J. W. (2019). Trans-cinnamic acid stimulates white fat browning and activates brown adipocytes. Nutrients, 11, 577.

    Article  CAS  PubMed Central  Google Scholar 

  • Kasi, P. D., Tamilselvam, R., Skalicka-Wozniak, K., Nabavi, S. F., Daglia, M., Bishayee, A., Pazoki-Toroudi, H., & Nabavi, S. M. (2016). Molecular targets of curcumin for cancer therapy: An updated review. Tumour Biology, 37, 13017–13028.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, V., Kumar, M., Kumar, A., Kaur, K., Dhillon, V. S., & Kaur, S. (2018). Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives. Biomedicine & Pharmacotherapy, 97, 564–586.

    Article  CAS  Google Scholar 

  • Khor, T. O., Keum, Y.-S., Lin, W., et al. (2006). Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Research, 66(2), 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., & Kim, H. (2011). Effect of garlic on high fat induced obesity. Acta Biologica Hungarica, 62, 244–254.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. W., Choi, J. H., Mukherjee, R., Hwang, K. C., & Yun, J. W. (2016). Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin. Molecular and Cellular Biochemistry, 415, 51–66.

    Article  CAS  PubMed  Google Scholar 

  • Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews. Genetics, 11, 597–610.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M. S., Erkeland, S. J., Pester, R. E., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunej, T., Jevsinek Skok, D., Zorc, M., Ogrinc, A., Michal, J. J., Kovac, M., & Jiang, Z. (2013). Obesity gene atlas inmammals. Journal of Genomics, 1, 45–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam, T. K., Shao, S., Zhao, Y., et al. (2012). Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiology, Biomarkers & Prevention, 21(12), 2176–2184.

    Article  CAS  Google Scholar 

  • Liu, D., Liu, C., Wang, X., Ingvarsson, S., & Chen, H. (2014). MicroRNA-451 suppresses tumor cell growth by downregulating IL6R gene expression. Cancer Epidemiology, 38(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Liang, H., Xia, Q., et al. (2013). Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clinical and Translational Oncology, 15(9), 741–746.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Zhang, X., Xiang, J., Lv, Y., & Shi, J. (2014). miR-451: Potential role as tumor suppressor of human hepatoma cell growth and invasion. International Journal of Oncology, 45, 739–745.

    Article  CAS  PubMed  Google Scholar 

  • Lone, J., Choi, J. H., Kim, S. W., & Yun, J. W. (2016). Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. Journal of Nutritional Biochemistry, 27, 193–202.

    Article  CAS  Google Scholar 

  • Loos, R. J. F., & Yeo, G. S. H. (2014). The bigger picture of FTO: The first GWAS-identified obesity gene. Nature Reviews. Endocrinology, 10, 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Lu, M., Cao, Y., Xiao, J., Song, M., & Ho, C. T. (2018). Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: A review. Food & Function, 9, 4569–4581.

    Article  CAS  Google Scholar 

  • Lv, G., Hu, Z., Tie, Y., et al. (2014). MicroRNA-451 regulates activating transcription factor 2 expression and inhibits liver cancer cell migration. Oncology Reports, 32(3), 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Mnafgui, K., Derbali, A., Sayadi, S., Gharsallah, N., Elfeki, A., & Allouche, N. (2015). Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet-induced obese rats. Journal of Food Science and Technology, 52, 4369–4377.

    Article  CAS  PubMed  Google Scholar 

  • Murase, T., Misawa, K., Minegishi, Y., Aoki, M., Ominami, H., Suzuki, Y., Shibuya, Y., & Hase, T. (2011). Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. American Journal of Physiology. Endocrinology and Metabolism, 300, E122–E133.

    Article  CAS  PubMed  Google Scholar 

  • Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70, 461–477.

    Article  CAS  PubMed  Google Scholar 

  • Nicolini, A., Carpi, A., & Rossi, G. (2006). Cytokines in breast cancer. Cytokine & Growth Factor Reviews, 17, 325–337.

    Article  CAS  Google Scholar 

  • Nishikawa, S., Kamiya, M., Aoyama, H., Nomura, M., Hyodo, T., Ozeki, A., Lee, H., Takahashi, T., Imaizumi, A., & Tsuda, T. (2018). Highly dispersible and bioavailable curcumin but not native curcumin induces brown-like adipocyte formation in mice. Molecular Nutrition & Food Research, 62, 1700731.

    Article  CAS  Google Scholar 

  • Ogden, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2012). Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief, 82, 1–8.

    Google Scholar 

  • Palmer, J. D., Soule, B. P., Simone, B. A., Zaorsky, N. G., Jin, L., & Simone, N. L. (2014). MicroRNA expression altered by diet: Can food be medicinal? Ageing Research Reviews, 17, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Parra, P., Serra, F., & Palou, A. (2010). Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One, 5, e13005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñarrieta, M., Tejeda, L., Mollinedo, P., Vila, J., & Bravo, J. (2014). Phenolic compounds in food. Revista Boliviana de Química, 31, 68–81.

    Google Scholar 

  • Qu, S., Shen, Y., Wang, M., Wang, X., & Yang, Y. (2019). Suppression of miR-21 and miR-155 of macrophage by cinnamaldehyde ameliorates ulcerative colitis. International Immunopharmacology, 67, 22–34.

    Article  CAS  PubMed  Google Scholar 

  • Rao, C. V., Wang, C.-X., Simi, B., et al. (1997). Enhancement of experimental colon cancer by genistein. Cancer Research, 57(17), 3717–3722.

    CAS  PubMed  Google Scholar 

  • Reddy, L., Odhav, B., & Bhoola, K. D. (2003). Natural products for cancer prevention: A global perspective. Pharmacology & Therapeutics, 99, 1–13.

    Article  CAS  Google Scholar 

  • Reuter, S., Gupta, S. C., Park, B., Goel, A., & Aggarwal, B. B. (2011). Epigenetic changes induced by curcumin and other natural compounds. Genes & Nutrition, 6(2), 93–108.

    Article  CAS  Google Scholar 

  • Ross, S. A., & Davis, C. D. (2014). The emerging role of microRNAs and nutrition in modulating health and disease. Annual Review of Nutrition, 34, 305–336.

    Article  CAS  PubMed  Google Scholar 

  • Rottiers, V., & Naar, A. M. (2012). Micrornas in metabolism and metabolic disorders. Nature Reviews Molecular Cell Biology, 13, 239–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo, G. L. (2007). Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochemical Pharmacology, 74(4), 533–544.

    Article  CAS  PubMed  Google Scholar 

  • Russo, M., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2010). Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins (Basel), 2, 517–551.

    Article  CAS  Google Scholar 

  • Salerno, E., Scaglione, B. J., Coffman, F. D., et al. (2009). Correcting miR- 15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Molecular Cancer Therapeutics, 8(9), 2684–2692.

    Article  CAS  PubMed  Google Scholar 

  • Sassen, S., Miska, E. A., & Caldas, C. (2008). MicroRNA: Implications for cancer. Virchows Archiv, 452, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, I. A., Sanna, V., Ahmad, N., Sechi, M., & Mukhtar, H. (2015). Resveratrol nanoformulation for cancer prevention and therapy. Annals of the New York Academy of Sciences, 1348, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S., Bhardwaj, A., Leavesley, S., Grizzle, W., Singh, S., & Singh, A. (2013). MicroRNAs as potential clinical biomarkers: Emerging approaches for their detection. Biotechnic & Histochemistry.

    Google Scholar 

  • Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: A review. Journal of the American Dietetic Association, 96(10), 1027–1039.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X.-D., Liu, X.-E., & Huang, D.-S. (2013). Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncology Reports, 29(6), 2401–2407.

    Article  CAS  PubMed  Google Scholar 

  • Tili, E., Michaille, J. J., Alder, H., et al. (2010). Resveratrol modulates the levels of microRNAs targeting genes encoding tumor suppressors and effectors of TGF𝛽signaling pathway in SW480 cells. Biochemical Pharmacology, 80(12), 2057–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang, W. P., & Kwok, T. T. (2010). Epigallocatechin gallate upregulation of miR-16 and induction of apoptosis in human cancer cells. The Journal of Nutritional Biochemistry, 21(2), 140–146.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi, N., & Ghosh, P. C. (2011). Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: Effect of monensin intercalated into folate-tagged liposomes. European Journal of Pharmaceutical Sciences, 43(4), 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi, N., Rathore, S. S., & Ghosh, P. C. (2011). Enhanced killing of human epidermoid carcinoma (KB) cells by treatment with ricin encapsulated into sterically stabilized liposomes in combination with monensin. Drug Delivery, 18(6), 394–404.

    Article  CAS  PubMed  Google Scholar 

  • Vyas, H. K., Pal, R., Vishwakarma, R., Lohiya, N. K., & Talwar, G. P. (2009). Selective killing of leukemia and lymphoma cells ectopically expressing hCG𝛽by a conjugate of curcumin with an antibody against hCG𝛽 subunit. Oncology, 76(2), 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Bian, S., & Yang, C. S. (2011). Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR- 210 expression caused by stabilizing HIF-1𝛼. Carcinogenesis, 32(12), 1881–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Wang, X., Ye, Z., Xu, C., Zhang, M., Ruan, B., Wei, M., Jiang, Y., Zhang, Y., Wang, L., et al. (2015). Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochemical and Biophysical Research Communications, 466, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Xiang, J., Shen, J., et al. (2013). Oncogenic microRNA-27a is a target for genistein in ovarian cancer cells. Anti-Cancer Agents in Medicinal Chemistry, 13(7), 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Yao, H., Zhu, P., et al. (2007). Let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2007). microRNAs as oncogenes and tumor suppressors. Developmental Biology, 302(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egbuna, C. et al. (2021). MicroRNAs as Targets of Dietary Phytochemicals in Obesity and Cancer. In: Egbuna, C., Hassan, S. (eds) Dietary Phytochemicals. Springer, Cham. https://doi.org/10.1007/978-3-030-72999-8_10

Download citation

Publish with us

Policies and ethics