Skip to main content

Evolution of the Arabian Nubian Shield and Snowball Earth

  • Chapter
  • First Online:
The Geology of the Arabian-Nubian Shield

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

Neoproterozoic evolution of the Arabian-Nubian Shield (ANS) and East African Orogen (EAO), 870–541 Ma, spanned revolutionary changes in Earth Systems, including a supercontinent cycle (Rodinia break-up, opening/closing of the Mozambique Ocean, Gondwana assembly), extreme climate fluctuations between long-lived glacial episodes as postulated by the Snowball Earth Hypothesis (1992–2002), marked increases in oceanic and atmospheric oxygen levels, and expansion of the biosphere from simple microbial life to the inclusion of larger and more diverse multicellular organisms. Understanding of these Earth System transitions has advanced tremendously over the past two decades through the integration of global studies of Neoproterozoic sedimentary successions with refined geochronologic techniques. This approach applied to Neoproterozoic Snowball Earth (NSE) localities now indicates that Neoproterozoic glaciations included two global-scale (panglacial) episodes, the ~717–659 Ma Sturtian and ~650–640 to 635 Ma Marinoan glaciations—which together comprise the Cryogenian Period, and more regional episodes during the Ediacaran Period and possibly, albeit controversially, during the earlier Tonian Period. Recent geochronologic, geochemical, and sedimentologic studies of low metamorphic grade ANS successions substantially contribute to the global Neoproterozoic dataset and, along with recently revised age constraints for the Cryogenian Period, facilitate an updated assessment of how Neoproterozoic glaciations may have influenced the sedimentary record of the ANS during its development. Tonian and Sturtian glaciations would have occurred following Rodinian break-up and major phases of juvenile crust formation in arc/island arc settings of the Mozambique Ocean (870–690 Ma), while latent terrane accretion and magmatism were still active. Paleogeographic reconstructions for these intervals generally place the ANS at tropical latitudes, where chemical weathering rates of juvenile crust terranes would have been high. Evidence supporting Tonian glaciation in the ANS is unresolved, with banded iron formation (BIF) and possible glacial diamictite scattered over the Central Eastern Desert (CED) of Egypt, NW Arabia, and possible correlative units in NE Sudan, as strongest candidates based on available age control (~780–740 Ma) and lithologic compatibility with NSE episodes. New age constraints for some of these localities (i.e., Atud diamictite and Um Nar, El-Hadid, Um Ghamis, and Wadi Kareim BIF localities in the CED) now demonstrate that deposition coincided with the Sturtian panglacial interval. Strong evidence of Sturtian glaciation in the ANS also occurs at the top of the Tonian-early Cryogenian Tambien Group in Northern Ethiopia, where polymict diamictite (<719.7 ± 0.5 Ma) bearing clasts consistent with glacial transport transitionally overlies limestone with pre-Sturtian 87Sr/86Sr values of 0.7066. Diamictite clast compositions similar to lower Tambien Group units suggest derivation from Tambien Group source terranes within the ANS, such as may have developed during early structural emergence of the EAO and/or associated eustatic sea-level fall. Carbonate units preserving negative carbon isotope excursions correlated to the ~800 Ma Bitter Springs anomaly, ~737 Ma Islay anomaly, and ~720 Ma pre-Sturtian transition, demonstrate that the Tambien Group is an important archive for studying the Tonian transition to extreme climates of the Cryogenian. The Marinoan (~645–635 Ma) glaciation overlapped with incipient development of the EAO, resulting from convergence, uplift, and structural deformation of earlier formed arc and accreted arc terranes, as the Mozambique Ocean closed between cratonic fragments of West and East Gondwana. Because most of the ANS was likely elevated above sea level, the ANS/EAO had few depocenters capable of preserving Marinoan sedimentation. Some peripheral margin basins, such as Murdama and Furayh basins in Arabia, overlapped with the Marinoan glaciation, but their sedimentary records have not been systematically studied for glacigenic characteristics. The onset of sedimentation in some post-amalgamation basins of the northern ANS (e.g., Jibalah Group of NW Arabia and possible equivalents in Jordan and Israel) may have overlapped with the Marinoan glaciation or Marinoan sediments could have been subsequently reworked in alluvial systems and redeposited during early basin formation. Following continental collision (~630–600 Ma), Ediacaran glaciations would have coincided with continued shortening and orogenic uplift (~600–540 Ma), when vast alluvial fan systems transported sediments away from EAO highlands. Ediacaran paleogeographic reconstructions generally place the ANS at higher tropical or temperate latitudes in the S. Hemisphere that may have supported regional scale glaciation. Within post-amalgamation basins of the northern Arabian Shield, the Jibalah Group sedimentary record includes polymict conglomerate, matrix-supported diamictite, and occasional dropstones that could be glacigenic. Regional deposition, constrained between underlying shield rocks (likely ≤605 ± 5 Ma) and the overlying Lower Cambrian basal unconformity (~540–520 Ma) and confirmed by U–Pb zircon dating of volcanic intervals within several basins, would have spanned the ~580 Ma Gaskiers glaciation, the ~575–567 Ma Shuram negative carbon isotope excursion, and younger Ediacaran glaciations. Although highly variable, sedimentary fill in many basins begins as polymict conglomerate with increasing limestone abundance in the higher succession, possibly consistent with a marine transgression. Carbonate δ13C values in combination with detrital zircon ages indicate that the basal conglomerate units pre-date the Shuram anomaly and could correlate with the ~580 Ma Gaskiers glaciation. Post-glacial supersequences may have been similarly deposited throughout northern Gondwana (Israel, Jordan, Saudi Arabia, Oman). Metazoan trace and probable body fossils are documented in Dhaiqa and Jifn basins above conglomeratic strata (Mataar Fm and Jifn Polymictic Conglomerate) that have been prospectively correlated with the Gaskiers glaciation. The lowest fossil horizons are no younger than 577 ± 5 Ma (Jifn) and 569 ± 3 Ma (Dhaiqa), similar to the Newfoundland record, where Ediacaran fauna appear ~9.5 myr after the ~580 Ma Gaskiers glaciation (Pu et al. in Geology 44:955–958, 2016). Follow-up studies are needed to assess the timing and glacigenic affinity of conglomerate and diamictite units, and to establish if and when marine deposition occurred within the Jibalah Group. A conspicuous stratigraphic feature of the northern Gondwanan margin is the widespread occurrence of an erosional unconformity throughout North Africa and Arabia separating Neoproterozoic basement from Cambro-Ordovician age sandstone that was principally sourced from erosion of the EAO. Although EAO erosion would have initiated as soon as regional uplift began, the exceptional power of Marinoan and Ediacaran ice sheets acting on a Himalaya-scale orogen may have contributed to ~650–540 Ma beveling of the Afro-Arabian Peneplain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Rahman Y, Gutzmer J, Li X-H, Siefert T, Li C-F, Ling X-X, Li J (2020) Not all Neoproterozoic iron formations are glaciogenic: sturtian-aged non-Rapitan exhalative iron formations from the Arabian-Nubian Shield. Miner Deposita 55:577–596

    Article  Google Scholar 

  • Abdelsalam MG, Stern RJ (1993) Tectonic evolution of the Nakasib suture, Red Sea Hills, Sudan: evidence for a late Precambrian Wilson Cycle. J Geol Soc London 150:393–404

    Article  Google Scholar 

  • Abdelsalam MG, Stern RJ (1996) Sutures and shear zones in the Arabian-Nubian shield. J Afr Earth Sc 23:289–310

    Article  Google Scholar 

  • Abdelsalam MG, Stern RJ, Copeland P, El Faki EM, El Hur B, Ibrahim FM (1998) The Neoproterozoic Keraf Suture in NE Sudan: Sinistral transpression along the eastern margin of West Gondwana. J. Geology 106:133–147

    Article  Google Scholar 

  • Abdelsalam MG, Abdel-Rahman EM, El-Faki EM, Al-Hur B, El-Bashier FRM, Stern RJ, Thurmond AL (2003) Neoproterozoic deformation in the northeastern part of the Saharan Metacraton, northern Sudan. Precambr Res 123:203–221

    Article  Google Scholar 

  • Abdo A, Avigad D, Gerdes A, Morag N, Vainer S (2020) Cadomian (ca. 550 Ma) magmatic and thermal imprint on the North Arabian-Nubian Shield (south and central Israel): new age and isotopic constraints. Precambr Res 346:105804

    Google Scholar 

  • Aftabi A (2001) Introduction of Bandar Abbas iron ore as the newest type of Rapitan banded iron formation. J Min Metall 60–70:53–66 (in Persian with English abstract)

    Google Scholar 

  • Alene M, Jenkin GRT, Leng MJ, Darbyshire DP (2006) The Tambien Group, Ethiopia: an early Cryogenian (ca. 800–735 Ma) Neoproterozoic sequence in the Arabian-Nubian Shield. Precambr Res 149:79–89

    Article  Google Scholar 

  • Alessio B, Blades M, Murray G, Thorpe B, Collins AS, Kelsey D, Foden JD, Payne J, Al-Khirbash S, Jourdan F (2017) Origin and tectonic evolution of the NE basement of Oman: a window into the Neoproterozoic accretionary growth of India? Geol Mag 155:1150–1174

    Article  Google Scholar 

  • Al-Husseini MI (2000) Origin of the Arabian Plate structures: Amar collision and Najd rift. GeoArabia 5:527–542

    Article  Google Scholar 

  • Al-Husseini MI (2011) Ediacaran-Cambrian middle east geologic time scale 2014—late ediacaran to early Cambrian (Infracambrian) Jibalah Group of Saudi Arabia. GeoArabia 16:69–90

    Article  Google Scholar 

  • Al-Husseini MI (2014) Ediacaran-Cambrian middle east geologic time scale 2014—proposed correlation of Oman’s Abu Mahara Supergroup and Saudi Arabia’s Jibalah Group. GeoArabia 19:107–132

    Google Scholar 

  • Al-Husseini MI (2015) Middle east geologic time scale 2015 Ediacaran and Cambrian Periods. J Middle East Petrol Geosci 20:511–528

    Google Scholar 

  • Ali KA, Stern RJ, Manton WI, Kimura J-I, Khamees HA (2009) Geochemistry, Nd isotopes and U–Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insights into the ~750 Ma crust-forming event. Precambr Res 171:1–22

    Article  Google Scholar 

  • Ali KA, Stern RJ, Manton WI, Johnson PR, Mukherjee SK (2010a) Neoproterozoic diamictite in the Eastern Desert of Egypt and Northern Saudi Arabia: evidence of ~750 Ma glaciation in the Arabian-Nubian Shield. Int J Earth Sci 90:705–726

    Article  Google Scholar 

  • Ali KA, Stern RJ, Manton WI, Kimura J-I, Whitehouse M, Mukherjee SK, Johnson PR, Griffin WR (2010b) Geochemical, U–Pb zircon and Nd isotopic investigations of the Ghawjah Metavolcanic rocks, Northwestern Saudi Arabia. Lithos 120:379–392

    Article  Google Scholar 

  • Allen PA (2007) The Huqf Supergroup of Oman: basin development and context for Neoproterozoic glaciation. Earth-Sci Rev 84:139–185

    Article  Google Scholar 

  • Allen PA, Rieu R, Etienne JL, Matter A, Cozzi A (2011a) The Ayn formation of the Mirbat Group, Dhofar, Oman. In: Arnaud E et al. (eds) The geological record of Neoproterozoic glaciations. Geological Society of London Memoir 36, 239–249

    Google Scholar 

  • Allen PA, Leather J, Brasier MD, Rieu R, Mccarron M, Le Guerroué E, Etienne JL, Cozzi A (2011b) The Abu Mahara Group (Ghubrah and Fiq formations), Jabal Akhdar, Oman. In: Arnaud E et al. (eds) The geological record of Neoproterozoic glaciations. Geological Society of London Memoir 36, 251–261

    Google Scholar 

  • Antcliffe J (2013) Questioning the evidence of organic compounds called sponge biomarkers. Paleontology 56:917–925

    Google Scholar 

  • Arkin Y, Beyth M, Dow DB, Levitte D, Haile T, Hailu T (1971) Geological map of Mekele Sheet area ND37-11 Tigre province. Imperial Ethiopian Government, Ministry of Mines. Geological Survey of Ethiopia. Scale 1:250,000

    Google Scholar 

  • Asmerom Y, Jacobsen SB, Knoll AH, Butterfield NJ, Swett K (1991) Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution. Geochim Cosmochim Acta 55:2883–2894

    Article  Google Scholar 

  • Asrat A, Barbey P, Ludden JN, Reisberg L, Gleizes G, Ayalew D (2004) Petrology and isotope geochemistry of the Pan-African Negash Pluton, northern Ethiopia: mafic-felsic magma interactions during the construction of shallow-level calc-alkaline plutons. J Petrol 45:1147–1179

    Article  Google Scholar 

  • Avigad D, Gvirtzman Z (2009) Late Neoproterozoic Arabian—rise and fall of the northern Nubian Shield: the role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 477:217–228

    Article  Google Scholar 

  • Avigad D, Kolodner K, McWilliams M, Persing H, Weissbrod T (2003) Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 31:227–230

    Article  Google Scholar 

  • Avigad D, Sandler A, Kolodner K, Stern RJ, McWilliams M, Miller N, Beyth M (2005) Mass Cambro production of Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: environmental implications. Earth Planet Sci Lett 240:818–826

    Article  Google Scholar 

  • Avigad D, Stern RJ, Beyth M, Miller N, McWilliams M (2007) Detrital zircon U–Pb geochronology of Cryogenian diamictites and lower Palaeozoic sandstone in Ethiopia (Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield. Precambr Res 154:88–106

    Article  Google Scholar 

  • Bailo E, Schandelmeier H, Franz G, Sun C-H, Stern RJ (2003) Plutonic and metamorphic rocks from the Keraf Suture (NE Sudan): a glimpse of the tectonic evolution of the NE margin of W. Gondwana during Neoproterozoic time. Precambr Res 123:67–80

    Article  Google Scholar 

  • Bartley JK, Semikhatov MA, Kaufman AJ, Knoll AH, Pope MC, Jacobsen SB, (2001) Global events across the Mesoproterozoic-Neoproterozoic boundary: C and Sr isotopic evidence from Siberia. Precambr Res 111:165–202

    Google Scholar 

  • Be’eri-Shlevin Y (2008) The origin and evolution of neoproterzoic magmatism in the northern Arabian-Nubian-Shield (Sinai Peninsula, Egypt, and southern Israel): evidence from the stable and radiogenic isotope record. Thesis (Ph. D.)-Ben-Gurion University of the Negev, Department of Geological and Environmental Sciences, 2008, Beer-Sheva

    Google Scholar 

  • Bentor YK (1985) The crustal evolution of the Arabo-Nubian massif with special reference to the Sinai peninsula. Precambr Res 28:1–74

    Article  Google Scholar 

  • Bertrand-Sarfati J, Moussine-Pouchkine A, Amard B, Ait Kaci Ahmed A (1995) First Ediacaran fauna found in Western Africa and evidence for an early Cambrian glaciation. Geology 23:133–136

    Article  Google Scholar 

  • Beyth M (1972) The geology of central western Tigre, Ethiopia. PhD thesis, Bonn, University of Bonn

    Google Scholar 

  • Beyth M, Stern RJ, Matthews A (1997) Significance of highgrade metasediments from the Neoproterozoic basement of Eritrea. Precambr Res 86:45–58

    Article  Google Scholar 

  • Beyth M, Avigad D, Wetzel HU, Matthews A, Berhe SM (2003) Crustal exhumation and indications for snowball Earth in the East African Orogen: North Ethiopia and East Eritrea. Precambr Res 123:187–201

    Article  Google Scholar 

  • Bibolini A (1920) Risultali preliminary delle osservazioni faite nel Nord-est della Colona Eritrea. Asmara

    Google Scholar 

  • Bibolini A (1921) Sui conglomerati di Rore Babla e dei Monti Haggar in Colonia Eritrea. Bollettino della Società Geologica Italiana 40:169–176

    Google Scholar 

  • Bibolini A (1922) Contributions a l’étude de la géologi de l’Afrique orientale Italienne. 13th International Geological Congress (1922, Brussels, Belgium). Title Comptes rendus de la XIIIe session, en Belgique, parts 1–3:797–814

    Google Scholar 

  • Blasband B, White S, Brooijmans P, de Brooder H, Viser W (2000) Late Proterozoic extensional collapse in Arabian-Nubian Shield. J Geol Soc London 157:615–628

    Article  Google Scholar 

  • Boger SD, Miller JM (2004) Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth Planet Sci Lett 219:35–48

    Article  Google Scholar 

  • Bold U, Smith EF, Rooney AD, Bowring SA, Buchwaldt R, Dudás FÖ, Ramezani J, Crowley JL, Schrag DP, Macdonald FA (2016) Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: the backbone for Cryogenian and early Ediacaran chemostratigraphic records. Am J Sci 316:1–63

    Article  Google Scholar 

  • Bonavia FF, Chorowicz J (1992) Northward expulsion of the Pan-African of northeast Africa guided by a reentrant zone of the Tanzania Craton. Geology 20:1023–1026

    Article  Google Scholar 

  • Bowring SA, Myrow PM, Landing E, Ramezani J (2003) Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. Geophys Res Abstr 5(13219):219

    Google Scholar 

  • Bowring SA, Grotzinger JP, Condon DJ, Ramezani J, Newall MJ, Allen PA (2007) Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci 307:1097–1145

    Article  Google Scholar 

  • Brasier MD, Shields G, Kuleshov VN, Zhegallo EA (1996) Integrated chemo-and biostratigraphic calibration of early animal evolution: Neoproterozoic-Early Cambrian of southwest Mongolia. Geol Mag 133:445–485

    Article  Google Scholar 

  • Brasier M, McCarron G, Tucker T, Leather J, Allen P, Shields G (2000) New U–Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28:175–178

    Article  Google Scholar 

  • Burke K, Kraus JU (2000) Deposition of immense Cambro-Ordovician sandstone bodies, now exposed mainly in N. Africa and Arabia, during the aftermath of the final assembly of Gondwana. Geol Soc Am Abstr Program 32:249

    Google Scholar 

  • Burke K, Sengör C (1986) Tectonic escape in the evolution of continental crust. In: Reflection seismology—the continental crust. Am Geophys Union, Geodynamic series 14:41–53

    Google Scholar 

  • Burns SJ, Matter A (1993) Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geol Helv 86:595–607

    Google Scholar 

  • Bussert R (2010) Exhumed erosional landforms of the Late Palaeozoic glaciation in northern Ethiopia: indicators of ice-flow direction, palaeolandscape and regional ice dynamics. Gondwana Res 18:356–369

    Article  Google Scholar 

  • Butterfield NJ (2015) The neoproterozoic. Curr Biol 25:R859–R863

    Article  Google Scholar 

  • Caby R, Fabre J (1981) Late proterozoic to early palaeozoic diamictites, tillites and associated glacigenic sediments in the Série Pourprée of western Hoggar, Algeria. In: Harland WB, Hambrey MJ (eds) Earth’s pre-pleistocene glacial record, pp 140–145. Cambridge University Press

    Google Scholar 

  • Calvez JY, Kemp J (1982) Geochronological investigations in the Mahd Adh Dhahab Quadrangle, Central Arabian Shield. Deputy Ministry for Mineral Resources: Jiddah, Saudi Arabia, BRGM-TR-02-5, pp 1–41

    Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Canfield DE, Poulton SW, Narbonne GM (2007) Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    Article  Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous Conditions dominated later neoproterozoic deep-water chemistry. Science 321:949–952

    Article  Google Scholar 

  • Canfield DE, Knoll AH, Poulton SW, Narbonne GM, Dunning GR (2020) Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. Am J Sci 320:97–124

    Article  Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279

    Article  Google Scholar 

  • Cecioni G (1981) Precambrian pebbly mudstones in Eritrea, northeastern Ethiopia. In: Hambrey MJ, Harland WB (eds) Earth’s pre-pleistocene glacial record. Cambridge University Press, A24, 150

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) updated 2015. The ICS international chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  • Cohen PA, Strauss JV, Rooney AD, Sharma M, Tosca N (2017) Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote. Sci Adv 3:

    Article  Google Scholar 

  • Cole JC (1988) Geology of the Aban Al Ahmar Quadrangle, Sheet 25F, Kingdom of Saudi Arabia (explanatory notes). Deputy Ministry for Mineral Resources Map GM-105A, C

    Google Scholar 

  • Collins AS, Pisarevsky SA (2005) Amalgamating eastern Gondwana: the evolution of the circum-Indian Orogens. Earth-Sci Rev 71:229–270

    Article  Google Scholar 

  • Collins AS, Windley BF (2002) The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. J Geol 110:325–339

    Article  Google Scholar 

  • Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y (2005) U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308:95–98

    Article  Google Scholar 

  • Cosca MA, Shimron A, Caby R (1999) Late Precambrian metamorphism and cooling in the Arabian-Nubian Shield: petrology and 40Ar/39Ar geochronology of metamorphic rocks of the Elat area (southern Israel). Precambr Res 98:107–127

    Article  Google Scholar 

  • Cox GM, Lewis CJ, Collins AS, Halverson GP, Jourdan F, Foden J, Nettle D, Kattan F (2012) Ediacaran terrane accretion within the Arabian-Nubian Shield. Gondwana Res 21:341–352

    Article  Google Scholar 

  • Cox GM, Halverson GP, Minarik WG, Le Heron DP, Macdonald FA, Bellefroid EJ, Strauss JV (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249

    Article  Google Scholar 

  • Cox GM, Halverson GP, Stevenson RK, Vokaty M, Poirier A, Kunzmann M, Li Z-X, Denyszyn SW, Strauss JV, Macdonald FA (2016) Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth Planet Sci Lett 446:89–99

    Article  Google Scholar 

  • Cox GM, Foden J, Collins AS (2018) Late Neoproterozoic adakitic magmatism of the eastern Arabian Nubian Shield. Geosci Front 10:1981–1992

    Article  Google Scholar 

  • Cui H, Kaufman AJ, Zou H, Kattan FH, Trusler P, Smith J, Ivantsov A, Rich TH, Al Qubsani A, Yazedi A, Liu X-M, Johnson P, Goderis S, Claeys P, Vickers-Rich P (2020) Primary or secondary? A dichotomy of the strontium isotope anomalies in the Ediacaran carbonates of Saudi Arabia. Precambr Res 343:

    Article  Google Scholar 

  • Dabbagh ME, Rogers JJW (1983) Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia. J Afr Earth Sci 1:47–57

    Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic-paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol Soc Am Bull 109:16–42

    Article  Google Scholar 

  • Davies FB (1985) Explanatory notes to the geologic map of the Al Wajh Quadrangle, Kingdom of Saudi Arabia. Geoscience Map GM-83, scale 1:250,000, sheet 26B. Deputy Ministry for Mineral Resources, Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia, p 27

    Google Scholar 

  • Davies J, Nairn AEM, Ressetar R (1980) The palaeomagnetism of certain late Precambrian and early Palaeozoic rocks from the Red Sea Hills, eastern desert, Egypt. J Geophys Res 85:3699–3710

    Article  Google Scholar 

  • De Souza Filho CR, Drury SA (1998) A Neoproterozoic supra-subduction terrane in northern Eritrea, NE Africa. J Geol Soc London 155:551–566

    Article  Google Scholar 

  • Delfour J (1970) Le Groupe de J’Balah, une nouvelle unite du Bouclier Arabe. Bureau de Recherche Geologique et Minieres Bulletin 4:19–32

    Google Scholar 

  • Denèle Y, Leroy S, Pelleter E, Pik R, Talbot JY, Kahanbari K (2012) The Cryogenian juvenile Arc formation and successive high-K calc-alkaline plutons intrusion of Socotra Island Yemen. Arab J Geosci 5:903–924

    Article  Google Scholar 

  • Deynoux M, Affaton P, Trompette R, Villeneuve M (2006) Pan-African tectonic evolution and glacial events registered in Neoproterozoic to Cambrian cratonic and foreland basins of West Africa. J Afr Earth Sc 46:397–426

    Article  Google Scholar 

  • Dohrmann M, Wörheide G (2019) Dating early animal evolution using phylogenomic data. Nat Sci Reports 7:3599

    Google Scholar 

  • Donnadieu Y, Goddéris Y, Ramstein G, Nédélec A, Meert J (2004) A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428:303–306

    Article  Google Scholar 

  • Dor YB, Harlavan Y, Avigad D (2018) Provenance of the great Cambrian sandstone succession of northern Gondwana unraveled by strontium, neodymium and lead isotopes of feldspars and clays. Sedimentology 65:2595–2620

    Article  Google Scholar 

  • Drury SA, Berhe SM (1993) Accretion tectonics in northern Eritrea revealed by remotely sensed imagery. Geol Mag 130:177–190

    Article  Google Scholar 

  • El-Shazly AK, Khalil KI (2016) Metamorphic and geochronologic constraints on the tectonic evolution of the Central Eastern Desert of Egypt. Precambr Res 283:144–168

    Article  Google Scholar 

  • El-Shazly AK, Khalil KI, Helba HA (2019) Geochemistry of banded iron formations and their host rocks from the Central Eastern Desert of Egypt: a working genetic model and tectonic implications. Precambr Res 325:192–216

    Article  Google Scholar 

  • Ernst RE, Wingate MTD, Buchan KL, Li ZX (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr Res 160:59–178

    Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Adabi M, Miller NR, Sadeghi A, Stockli Houshmandzadeh DF (2016) Evidence for ~560 Ma Ediacaran glaciation in the Kahar Formation, Central Alborz Mountains, northern Iran. Gondwana Res 31:164–183

    Article  Google Scholar 

  • Evans D (2000) Stratigraphic, geochronological, and paleomagneticconstraints upon the Neoproterozoic climatic paradox. Am J Sci 300:347–433

    Article  Google Scholar 

  • Evans D, Raub TD (2011) Neoproterozoic glacial palaeolatitudes: a global update. In: Arnaud E, Halverson GP, Shields-Shou G (eds) The geological record of Neoproterozoic glaciations. Geological Society of London, London, pp 93–112

    Google Scholar 

  • Eyal M, Be’eri-Shlevin Y, Eyal Y, Whitehouse MJ, Litvinovsky B (2014) Three successive proterozoic island arcs in the northern arabian–nubian shield: evidence from SIMS U–Pb dating of zircon. Gondwana Res 25:338–357

    Google Scholar 

  • Fairchild IJ, Spiro B, Herrington PM (2000) Controls on Sr and C isotope compositions of Neoproterozoic Sr-rich limestones of East Greenland and North China. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in an evolving precambrian world, SEPM Special Publication vol 67, pp 297–313

    Google Scholar 

  • Fairchild IJ, Spencer T, Ali D, Anderson R, Anderton R, Boomer I, Dove D, Evans J, Hambrey M, Howe J, Sawaki Y, Wang Z, Shields G, Zhou Y, Skelton A, Tucker M (2018) Tonian-Cryogenian boundary sections of Argyll, Scotland. Precambr Res 319:37–64

    Article  Google Scholar 

  • Feulner G (2012) The faint young Sun problem. Rev Geophys 50:364–370

    Article  Google Scholar 

  • Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran Ocean. Nature 444:744–747

    Article  Google Scholar 

  • Fitzsimons ICW (2000) Grenville-age basement provinces in east Antarctica: evidence for three separate collisional orogens. Geology 28:879–882

    Article  Google Scholar 

  • Fowler A, Hassen I, Hassan M (2015) Tectonic evolution and setting of the Sa’al Complex, southern Sinai, Egypt: a Proterozoic continental back-arc rift model. J Afr Earth Sci 104:103–131

    Article  Google Scholar 

  • Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106

    Article  Google Scholar 

  • Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11:326–335

    Article  Google Scholar 

  • Garfunkel Z (1999) History and paleogeography during the Pan-African orogen to stable platform transition: reappraisal of the evidence from the Elat area and the northern Arabian-Nubian Shield. Israel J Earth Sci 48:135–157

    Google Scholar 

  • Garland CR (1980) Geology of the Adigrat area. Ministry of Mines Memoir No. 1, p 51. Addis Ababa 1:250,000 map

    Google Scholar 

  • Gernon TM, Hincs TK, Tyrrell T, Rohling EJ, Palmer MR (2016) Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nat Geosci 9:242–248

    Article  Google Scholar 

  • Ghebreab W (1999) Tectono-metamorphic history of Neoproterozoic rocks in eastern Eritrea. Precambr Res 98:83–105

    Article  Google Scholar 

  • Glennie KW, Boeuf MGA, Hughes-Clarke MW, Moody-Stuart M, Pilaar WFH, Reinhardt BM (1974) Geology of the Oman mountains. Verhandelingen van het Koninklijk Nederlands geologisch mijnbouwkundig Genootschap 31:423

    Google Scholar 

  • Goddéris Y, Donnadieu Y, Nédélec A, Dupré B, Dessert C, Grard A, Ramstein G, François LM (2003) The Sturtian “snowball” glaciation: fire and ice. Earth Planet Sci Lett 211:1–12

    Google Scholar 

  • Gong Z, Kodama KP, Li YX (2017) Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion. Precambr Res 289:62–74

    Article  Google Scholar 

  • Gostin VA, McKirdy DM, Webster LJ, Williams GE (2010) Ediacaran ice-rafting and coeval asteroid impact, South Australia: insights into the terminal Proterozoic environment. Aust J Earth Sci 57:859–869

    Article  Google Scholar 

  • Gray DR, Foster DA, Meert JG, Goscombe BD, Armstrong R, Truow RAJ, Passchier CW (2008) A Damaran perspective on the assembly of southwestern Gondwana. Geol Soc London, Special Publications 294:257–278

    Article  Google Scholar 

  • Grotzinger JP, Fike DA, Fischer WW (2011) Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci 4:285–292

    Article  Google Scholar 

  • Guilbaud R, Poulton SW, Butterfield NJ, Zhu M, Shields-Zhou GA (2015) A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat Geosci 8:466–470

    Article  Google Scholar 

  • Hadley DG (1974) The taphrogeosynclinal Jubaylah Group in the Mashhad area, northwestern Hijaz. Saudi Arabian Directorate General of Mineral Resources Bulletin 10, p 18

    Google Scholar 

  • Hadley DG (1986) Explanatory notes to the geologic map of the Sahl Al Matran Quadrangle, Kingdom of Saudi Arabia. Geoscience Map GM-86 C, scale 1:250,000, sheet 26C. Deputy Ministry for Mineral Resources, Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia. p 24

    Google Scholar 

  • Hailu T (1975) Geological map of Adi Arkay. Adis Ababa, Geological Survey of Ethiopia Technical Report, scale 1:250,000

    Google Scholar 

  • Halverson GP (2006) A Neoproterozoic chronology. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology: dordrecht. Springer, Netherlands, pp 231–271

    Chapter  Google Scholar 

  • Halverson GP, Hoffman PF, Schrage DP, Maloof AC, Rice AHN (2005) Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull 117:1181–1207

    Article  Google Scholar 

  • Halverson GP, Dudás FÖ, Maloof AC, Bowring SA (2007a) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol 256:103–129

    Article  Google Scholar 

  • Halverson GP, Maloof AC, Schrag DP, Dudás FÖ, Hurtgen M (2007b) Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard. Chem Geol 237:5–27

    Article  Google Scholar 

  • Halverson GP, Cox GM, Théou-Hubert L, Schmitz M, Hagadorn JW, Johnson P, Sansjofre P, Kunzmann M, Schumann D (2013) A multi-proxy geochemical record from a late Neoproterozoic volcano-sedimentary basin, eastern Arabian Shield. McGill University, Canada, unpublished poster

    Google Scholar 

  • Halverson GP, Porter SM, Gibson TM (2018) Dating the late Proterozoic stratigraphic record. Emerg Top Life Sci 2:137–147

    Article  Google Scholar 

  • Hargrove US (2006a) Crustal evolution of the Neoproterozoic Bi’r Umq suture zone, Kingdom of Saudi Arabia. Geochronological, Isotopic, and Geochemical Constraints. Ph.D. Thesis, University of Texas, Dallas, TX, USA

    Google Scholar 

  • Hargrove US, Stern RJ, Kimura J-I, Manton WI, Johnson PR (2006) How juvenile if the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi’r Umq suture zone, Saudi Arabia. Earth Planet Sci Lett 252:308–326

    Article  Google Scholar 

  • Harland WB (1964) Evidence of late Precambrian glaciation and its significance. In: Nairn AEM (ed) Problems in palaeoclimatology. Interscience, London, pp 119–149

    Google Scholar 

  • Hassanlouei BT, Rajabzadeh MA (2019) Iron ore deposits associated with Hormuz evaporitic series in Hormuz and Pohl salt diapirs, Hormuzgan province, southern Iran. J Asian Earth Sci 172:30–55

    Article  Google Scholar 

  • Hebert CL, Kaufman AJ, Penniston-Dorland SC, Martin AJ (2010) Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambr Res 182:402–412

    Article  Google Scholar 

  • Hedge CE (1984) Precambrian geochronology of part of northwestern Saudi Arabia, Kingdom of Saudi Arabia. US Geological Survey Open File Report 83–381, p 12

    Google Scholar 

  • Helmy HM, Morad AE, Abdel Rahman HB (2021) Um Zariq formation, southeast sinai, Egypt: a new record of the Sturtian Snowball Earth event in the Arabian Nubian Shield. J Afr Earth Sc 173:

    Article  Google Scholar 

  • Hill AC, Arouri K, Gorjan P, Walter MR (2000) Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate/evaporite: the Bitter Springs Formation, Central Australia. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving precambrian world. SEPM, 327–344 (Spec. Pub. 67)

    Google Scholar 

  • Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball earth. J Afr Earth Sci 29:17–33

    Article  Google Scholar 

  • Hoffman PF (2013) The great oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chem Geol 362:143–156

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Hoffman PF, Halverson GP, Domack EW, Husson JM, Higgins JA, Schrag DP (2007) Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth Planet. Sci Lett 258:114–131

    Google Scholar 

  • Hoffman PF, Abbot DS, Ashkenazy Y, Benn DI, Brocks JJ, Cohen PA, Cox GM, Creveling JR, Donnadieu Y, Erwin DH, Fairchild IJ, Ferreira D, Goodman JC, Halverson GP, Jansen MF, Le Hir G, Love GD, Macdonald FA, Maloof AC, Partin CA, Ramstein G, Rose BEJ, Sadler PM, Tziperman E, Voigt A, Warren SG (2017) Snowball earth climate dynamics and cryogenian geology-geobiology. Sci Adv 3:e1600983

    Google Scholar 

  • Horton F (2015) Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? Geochem Geophys Geosystems 1:1723–1738

    Article  Google Scholar 

  • Husson JM, Maloof AC, Schoene B, Chen CY, Higgins JA (2015) Stratigraphic expression of Earth’s deepest δ13C excursion in the Wonoka Formation of South Australia. Am J Sci 315:1–45

    Google Scholar 

  • Hyde WT, Crowley TJ, Baum SK, Peltier WR (2000) Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/icesheet model. Nature 405:425–429

    Article  Google Scholar 

  • Jacobs J, Thomas RJ (2004) Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East African-Antarctic orogen. Geology 32:721–724

    Article  Google Scholar 

  • Jacobs J, Bauer W, Fanning CM (2003) Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambr Res 126:27–53

    Article  Google Scholar 

  • Jarrar GH, Wachendorf H, Zellmer D (1991) The Saramuj Conglomerate: evolution of a Pan-African molasse sequence from southwest Jordan. N Jb Geol Palaontol Mh 6:335–356

    Google Scholar 

  • Jarrar GH, Wachendorf H, Zachmann D (1993) A Pan-African alkaline pluton intruding the Saramuj Conglomerate, southwest Jordan. Geol Rundschau 82:121–135

    Article  Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Article  Google Scholar 

  • Johnson PR (1995) Proterozoic geology of Western Saudi Arabia—North-Central Sheet: explanatory notes on precambrian stratigraphic relations. Saudi Arabian Deputy Ministry for Mineral Resources, Jiddah, Saudi Arabia, USGS-OF-95-5, pp 1–44

    Google Scholar 

  • Johnson PR (2003) Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African Orogen. Precambr Res 123:321–337

    Article  Google Scholar 

  • Johnson PR (2014) An expanding Arabian-Nubian Shield geochronologic and isotopic dataset: defining limits and confirming the tectonic setting of a Neoproterozoic accretionary orogen. Open Geol J 8:3–33

    Article  Google Scholar 

  • Johnson P, Kattan F (2008) Lithostratigraphic revision in the Arabian Shield: the impacts of geochronology and tectonic analysis. Arab J Sci Eng 33:3–16

    Google Scholar 

  • Johnson PR, Kattan FH (2012) The geology of the Saudi Arabian Shield. Saudi Geological Survey, Jiddah, Saudi Arabia, pp 1–479

    Google Scholar 

  • Johnson PR, Stewart ICF (1995) Magnetically inferred basement structure in central Saudi Arabia. Tectonophysics 245:37–52

    Article  Google Scholar 

  • Johnson PR, Woldehaimanot B (2003) Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup, Geological Society, London, Spec. Pub. 206, pp 289–325

    Google Scholar 

  • Johnson PR, Abdelsalam MG, Stern RJ (2003) The Bi’r Umq-Nakasib Suture Zone in the Arabian-Nubian Shield: a key to understanding crustal growth in the East African Orogen. Gondwana Res 6:523–530

    Article  Google Scholar 

  • Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late cryogenian-ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232

    Google Scholar 

  • Johnson PR, Halverson GP, Kusky TM, Stern RJ, Pease V (2013) Volcanosedimentary Basins in the Arabian-Nubian Shield: markers of repeated exhumation and denudation in a neoproterozoic accretionary orogen. Geosciences 3:389–445

    Article  Google Scholar 

  • Jones DS, Maloof AC, Hurtgen MT, Rainbird RH, Schrag DP (2010) Regional and global chemostratigraphic correlation of the early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. Precambr Res 181:43–63

    Article  Google Scholar 

  • Kaufman AJ, Jacobsen SB, Knoll AH (1993) TheVendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 84:27–41

    Google Scholar 

  • Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci USA 94:6600–6605

    Article  Google Scholar 

  • Keller CB, Husson JM, Mitchell RN, Bottke WF, Gernon TM, Boehnke P, Bell EA, Swanson-Hysell NL, Peters SE (2020) Neoproterozoic glacial origin of the Great Unconformity. Proc Nat Academy Sci 116:1136–1145

    Article  Google Scholar 

  • Kemp J (1981) Geologic map of the Wadi Al Ays Quadrangle, Sheet 25C, Kingdom of Saudi Arabia, Saudi Arabian Deputy Ministry for Mineral Resources: Jiddah, Saudi Arabia, GM 53, pp 1–39

    Google Scholar 

  • Kemp J, Gros Y, Prian JP (1982) Geologic Map of the Mahd adh Dhahab Quadrangle, Sheet 23E, Kingdom of Saudi Arabia, Saudi Arabian Deputy Ministry for Mineral Resources: Jiddah, Saudi Arabia, GM 64, pp 1–39

    Google Scholar 

  • Kempf O, Kellerhals P, Lowrie W, Matter A (2000) Palaeomagnetic directions in late Precambrian glaciomarine sediments of the Mirbat Sandstone Formation, Oman. Earth Planet Sci Lett 175:181–190

    Article  Google Scholar 

  • Kennedy A, Johnson PR, Kattan FH (2004) SHRIMP geochronology in the Northern Arabian Shield Part I: data acquisition; Saudi geological survey: Jiddah, Saudi Arabia, SGS-OF-2004-11, pp 1–28

    Google Scholar 

  • Kennedy A, Johnson PR, Kattan FH (2005) SHRIMP geochronology in the Northern Arabian Shield Part II: data acquisition 2004, Saudi Geological Survey: Jiddah, Saudi Arabia, SGS-OF-2005–10, pp 1–44

    Google Scholar 

  • Kennedy A, Kozdroj W, Kattan FH, Ziolkowska-Kozdroj M, Johnson PR (2010a) SHRIMP Geochronology in the Arabian Shield (Midyan Terrane, Afif Terrane, Ad Dawadi Terrane) and Nubian Shield (Central Eastern Desert Terrane) Part IV: data acquisition 2008; Saudi Geological Survey: Jiddah, Saudi Arabia; SGS-OF-2010-10, pp 1–101

    Google Scholar 

  • Kennedy A, Kozdroj W, Kadi K, Ziolkowska-Kozdroj M, Johnson PR (2010b) SHRIMP geochronology of the Arabian Shield (Midyan Terrane, Afif Terrane) and Nubian Shield (Central Eastern Desert Terrane), Part V: data acquisition 2009; Saudi Geological Survey, Jiddah, Saudi Arabia, SGS-OF-2010-11, p 80

    Google Scholar 

  • Kidane T, Bachtadse V, Alene M (2014) Quaternary remagnetization of the Neoproterozoic limestone of Negash Synclinorium (Arabian–Nubian Shield, northern Ethiopia): With implications of no paleomagnetic testing for the proposed Snowball Earth events. Phys Earth Planet Inter 235:1–12

    Article  Google Scholar 

  • Kilner B, Conall MN, Brasier M (2005) Low-latitude glaciation in the Neoproterozoic of Oman. Geology 33:413–416

    Article  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere—a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  • Kiyokawa S, Suzuki T, El-Dokouny HA, Dawoud M, Abuelhasan AA (2020) Stratigraphy, petrology, and geochemistry of a Neoproterozoic banded iron sequence in the El-Dabbah Group, central Eastern Desert, Egypt. J Afr Earth Sc 168:

    Article  Google Scholar 

  • Klaebe RM, Smith MP, Fairchild IJ, Fleming EJ, Kennedy MJ (2018) Facies-dependent d13C variation and diagenetic overprinting at the onset of the Sturtian glaciation in north-east Greenland. Precambr Res 319:96–113

    Article  Google Scholar 

  • Knoll AH, Walter MR, Narbonne GM, Christie-Blick N (2004) The Ediacaran Period: a new addition to the geologic time scale. Lethaia 39:13–30

    Article  Google Scholar 

  • Knoll AH, Walter MR, Narbonne GM, Christie-Blick N (2006) A new period the geologic time scale. Science 205:621–622

    Google Scholar 

  • Kröner A (2001) The mozambique belt of East Africa and madagascar: significance of zircon and Nd model ages for Rodinia and Gondwana supercontinent formation and dispersal. S Afr J Geol 104:151–166

    Article  Google Scholar 

  • Kröner A, Muhongo S, Hegner E, Wingate MTD (2003) Single zircon geochronology and Nd isotopic systematics of Proterozoic highgrade rocks from the Mozambique belt of southern Tanzania (Masasi area): implications for Gondwana assembly. J Geol Soc London 160:645–757

    Article  Google Scholar 

  • Kusky TM, Matsah MI (2003) Neoproterozoic dextral faulting on the Najd fault system, Saudi Arabia, preceded sinistral faulting and escape tectonics related to closure of the Mozambique Ocean. Geol Soc Spec Publ 206:327–361

    Article  Google Scholar 

  • Küster D, Liégeois J-P, Matukov D, Sergeev S, Lucassen F (2008) Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): evidence for a Bayudian event (920–900 Ma) preceding the Pan-African orogenic cycle (860–590 Ma) at the eastern boundary of the Saharan Metacraton. Precambr Res 164:16–39

    Article  Google Scholar 

  • Kuznetsov AB, Semikhatov MA, Maslov AV, Gorokhov IM, Prasolov EM, Krupenin MT, Kislova IV (2006) New data on Sr-and C-isotopic chemostratigraphy of the Upper Riphean type section (Southern Urals). Stratigr Geol Correl 14:602–628

    Article  Google Scholar 

  • Le Guerroué E (2010) Duration and synchroneity of the largest negative carbon isotope excursion on Earth: the Shuram/Wonoka anomaly. CR Geosci 342:204–214

    Article  Google Scholar 

  • Letalenet J (1979) Explanatory notes to the geologic map of the ‘Afif Quadrangle, Kingdom of Saudi Arabia. Geoscience Map GM-47C, scale 1:250,000, sheet 23F. Deputy Ministry for Mineral Resources, Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia, p 20

    Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A et al (2008) Assembly configuration and break-up history of Rodinia: a synthesis. Precambr Res 160:179–210

    Article  Google Scholar 

  • Li Z-X, Evans DAD, Halverson GP (2013) Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sed Geol 294:219–232

    Article  Google Scholar 

  • Li X-H, Abd El-Rahman Y, Abu Anbar M, Li J, Ling X-X, Wu L-G, Masoud AE (2018) Old continental crust underlying juvenile oceanic arc: evidence from northern Arabian-Nubian Shield, Egypt. Geophys Res Lett 45:3001–3008

    Article  Google Scholar 

  • Linneman U, Pidal AP, Hofmann M, Drost K, Quesada C, Gerdes A, Marko L, Gärtner A, Zieger J, Ulrich J, Krause R, Vickers-Rich P, Horak J (2018) A ~565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. Int J Earth Sci https://doi.org/10.1007/s00531-017-1520-7

  • Liu Y, Peltier WR (2013) Sea level variations during snowball Earth formation: 1. A preliminary analysis. J Geophys Res 118:4410–4434

    Article  Google Scholar 

  • Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of demospongiae during the cryogenian. Nature 457:718–722

    Article  Google Scholar 

  • Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP (2010a) Calibrating the cryogenian. Science 327:1241–1243

    Article  Google Scholar 

  • Macdonald FA, Strauss JV, Rose CV, Dudas F, Schrag DP (2010b) Stratigraphy of the port Nolloth Group of Namibia and South Africa and implications for the age of neoproterozoic iron formations. Am J Sci 310:862–888

    Article  Google Scholar 

  • MacLennan SA, Park Y, Swanson-Hysell NL, Maloof AC, Schoene B, Gebreslassie M, Antilla E, Tesema T, Alene M, Haileab B (2018) The arc of the Snowball: U–Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation. Geology 46:539–542

    Article  Google Scholar 

  • Maloof AC, Schrag DP, Crowley JL, Bowring SA (2005) An expanded record of early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Can J Earth Sci 42:2195–2216

    Article  Google Scholar 

  • Maloof AC, Halverson GP, Kirschvink JL, Schrag DP, Weiss BP, Hoffman PF (2006) Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. GSA Bulletin 118:1024–1099

    Article  Google Scholar 

  • Master S, Wendorff M (2011) Neoproterozoic glaciogenic diamictites of the Katanga Supergroup, Central Africa. In: Arnaud E et al (eds) The geological record of neoproterozoic glaciations. Geol Soc London Memoir 36:173–183

    Google Scholar 

  • McCaffrey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE, Jeganathan A, Watt DS (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta 58:529–532

    Google Scholar 

  • Meert J (2003) A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362:1–40

    Article  Google Scholar 

  • Meert JG, Lieberman BS (2008) The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res 14:5–21

    Article  Google Scholar 

  • Meert JG, Van Der Voo R (1997) The assembly of Gondwana 800–550 Ma. J Geodyn 23:223–235

    Article  Google Scholar 

  • Miller NR, Alene M, Sacchi R, Stern R, Conti A, Kröner A, Zuppi G (2003) Significance of the Tambien Group (Tigre, N. Ethiopia) for snowball Earth events in the Arabian-Nubian Shield. Precambr Res 121:263–283

    Article  Google Scholar 

  • Miller N, Schilman B, Avigad D, Stern RJ, Beyth M (2006) Neoproterozoic Snowball Earth—the northern Ethiopia record. Abstract presented in the “Snowball Earth 2006” conference, Monte Verita, Switzerland, pp 74–75

    Google Scholar 

  • Miller N, Johnson P, Stern R (2008) Marine versus non-marine environments for the Jibalah Group, NW Arabian Shield: a sedimentological and geochemical survey and report of possible Metazoa in the Dhaiqa Formation. Arab J Sci Eng 22:55–77

    Google Scholar 

  • Miller NR, Stern RJ, Avigad D, Beyth M, Schilman B (2009) Neoproterozoic carbonate-slate sequences of the Tambien Group, N. Ethiopia (I): pre-‘Sturtian’ chemostratigraphy and regional correlation. Precambr Res 170:129–156

    Article  Google Scholar 

  • Miller NR, Avigad D, Stern RJ, Beyth M (2011) The Tambien Group, northern Ethiopia (Tigre). In: Arnaud E et al (eds) The geological record of Neoproterozoic glaciations. Geol Soc London Memoir 36:263–276

    Google Scholar 

  • Moghazi A-KM, Ali KA, Wilde SA, Zhou Q, Andersen T, Andresen A, El-Enen MMA, Stern RJ (2012) Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, Southern Sinai, Egypt: implications for tectonic setting and crustal evolution. Lithos 154:147–165

    Article  Google Scholar 

  • Morag N, Avigad D, Gerdes A, Belousova E, Harlavan Y (2011a) Crustal evolution and recycling in the northern Arabian-Nubian Shield: new perspectives from zircon Lu–Hf and U–Pb systematics. Precambr Res 186:101–116

    Article  Google Scholar 

  • Morag N, Avigad D, Gerdes A, Belousova E, Harlavan Y (2011b) Detrital zircon Hf isotopic composition indicates long-distance transport of North Gondwana Cambrian-Ordovician sandstones. Geology 39:955–958

    Article  Google Scholar 

  • Nairn AEM, Perry TA, Ressetar R, Rogers S (1987) A palaeomagnetic study of the Dokhan volcanic formation and younger granites, eastern desert of Egypt. J Afr Earth Sc 6:353–365

    Google Scholar 

  • Nettle D (2009) A sequence stratigraphic, geochronological and chemostratigraphic investigation of the Ediacaran Antaq Basin, Eastern Arabian Shield, Saudi Arabia. Unpublished Honours Thesis, Geology and Geophysics, University of Adelaide, Australia; Saudi Geological Survey Technical Report SGSTR-2010-5, p 83

    Google Scholar 

  • Nettle D, Halverson GP, Cox GM, Collins AS, Schmitz M, Gehling J, Johnson PR, Kadi K (2013) A middle-late Ediacaran volcano-sedimentary record from the Eastern Arabian-Nubian Shield. Terra Nova 26:120–129

    Article  Google Scholar 

  • Newman MJ, Rood RT (1977) Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035–1037

    Article  Google Scholar 

  • Nicholson PG, Janjou DLA, Fanning CM, Heaman LM, Grotzinger JP (2008) Deposition, age, and Pan-Arabian correlation of late Neoproterozoic outcrops in Saudi Arabia (abstract), 8th Middle East Geoscience Conference and exhibition, GEO 2008, Manama, Bahrain AAPG Search and Discovery Magazine, article 90077

    Google Scholar 

  • Och LM, Shields-Zhou GA (2012) The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci Rev 110:26–57

    Article  Google Scholar 

  • Pallister JS, Stacey JS, Fischer LB, Premo WR (1988) Precambrian ophiolites of Arabia: geologic settings, U–Pb geochronology, Pb-isotope characteristics, and implications for continental accretion. Precambr Res 38:1–54

    Article  Google Scholar 

  • Park U, Swanson-Hysell NL, MacLennan SA, Maloof AC, Gebreslassie M, Tremblay MM, Schoene B, Alene M, Anttila ESC, Tesema T, Haileab B (2019) The lead-up to the Sturtian Snowball Earth: neoprotoerozoic chemostratigraphy time-calibrated by the Tambien Group of Ethiopia. GSA Bulletin 132:1119–1149

    Article  Google Scholar 

  • Patchett PJ, Chase CG (2002) Role of transform continental margins in major crustal growth episodes. Geology 30:39–42

    Article  Google Scholar 

  • Pellaton C (1979) Geologic map of the Yanbu’al Bahr Quadrangle, Sheet 24C, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources, Jiddah, Saudi Arabia

    Google Scholar 

  • Pisarevsky SA, Murphy JB, Cawood PA, Collins AS (2008) Late Neoproterozoic and early Cambrian palaeogeography: models and problems. Geol Soc, London 294:9–31 Special Publications

    Article  Google Scholar 

  • Pisarevsky SA, McCausland PJ, Hodych JP, O’Brien SJ, Tait JA, Murphy JB, Colpron M (2011) Paleomagnetic study of the late Neoproterozoic Bull Arm and Crown Hill formations (Musgravetown Group) of eastern Newfoundland: Implications for Avalonia and West Gondwana paleogeography. Can J Earth Sci 49:308–327

    Article  Google Scholar 

  • Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014) Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–638

    Article  Google Scholar 

  • Pollard D, Kasting JF (2005) Snowball Earth: a thin-ice solution with flowing sea glaciers. J Geophys Res 110:C07010

    Google Scholar 

  • Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7:107–112

    Article  Google Scholar 

  • Powell JH, Abed A, Jarrar GH (2015) Ediacaran araba complex of jordan. GeoArabia 20:99–156

    Article  Google Scholar 

  • Pu JP, Bowring SA, Ramezani J, Myrow P, Raub TD, Landing E, Mills A, Hodgin E, Macdonald FA (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44:955–958

    Article  Google Scholar 

  • Ramsay CR (1986) Geologic Map of the Rabigh Quadrangle, Sheet 22D, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources: Jiddah, Saudi Arabia, GM 84:1–49

    Google Scholar 

  • Rieu R, Allen PA, Cozzi A, Kosler J, Bussy F (2007) A composite stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: integrating new litho-, chemo- and chronolstratigraphic data of the Mirbat area, southern Oman. J Geol Soc, London 164:997–1009

    Article  Google Scholar 

  • Rooney AD, Chew DM, Selbey D (2011) Re–Os geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re–Os systematics. Precambr Res 185:202–214

    Article  Google Scholar 

  • Rooney AD, Macdonald FA, Strauss JV, Dudás FÖ, Hallmann C, Selby D (2014) Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proc Natl Acad Sci 111:51–56

    Article  Google Scholar 

  • Rooney AD, Strauss JV, Brandon AD, Macdonald FA (2015) A Cryogenian chronology: two long-lasting, synchronous Neoproterozoic snowball Earth glaciations. Geology 43:459–462

    Article  Google Scholar 

  • Rooney AD, Cantine MD, Bergmann KD, Gómez-Pérez I, Al Baloushi B, Boag TH, Busch JF, Sperling EA, Strauss JV (2020) Calibrating the coevolution of Ediacaran life and environment. Proc Nat Acad Sci 117:16824–16830

    Article  Google Scholar 

  • Rothman DH, Hayes JM, Summons RE (2003) Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci 100:8124–8129

    Article  Google Scholar 

  • Runnegar B (2000) Loophole for snowball earth. Nature 405:403–404

    Article  Google Scholar 

  • Sahoo SK, Planavsky NJ, Kendall B, Wang X, Shi X, Scott C, Anbar AD, Lyons TW, Jiang G (2012) Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–549

    Article  Google Scholar 

  • Sandler A, Teutsch N, Avigad D (2012) Sub-Cambrian pedogenesis recorded in weathering profiles of the Arabian-Nubian Shield. Sedimentology 59:1305–1320

    Article  Google Scholar 

  • Sawaki Y, Kawai T, Shibuya T, Tahata M, Omori S, Tsuyoshi K, Yoshida N, Hirata T, Ohno T, Windley BF, Shigenori M (2010) 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig Glaciogenic Formation, Scotland. Precambr Res 179:150–164

    Google Scholar 

  • Schrag DP, Higgins JA, Macdonald FA, Johnston DT (2013) Authigenic carbonate and the history of the global carbon cycle. Science 339:540–543

    Article  Google Scholar 

  • Shang CK, Morteani G, Satir M, Taubald H (2010) Neoproterozoic continental growth prior to Gondwana assembly: constraints from zircon-titanite geochronology, geochemistry and petrography of ring complex granitoids, Sudan. Lithos 118:61–81

    Article  Google Scholar 

  • Shields GA, Mills BJW, Zhu M, Raub RD, Daines SJ, Lenton TM (2019) Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nat Geosci 12:823–827

    Article  Google Scholar 

  • Shields-Zhou GA, Denoux M, Och L (2011) The record of Neoproterozoic glaciation in the Taoudéni Basin, NW Africa. In: Arnaud E et al (eds) The geological record of Neoproterozoic glaciations. Geol Soc London Memoir 36:163–171

    Google Scholar 

  • Shields-Zhou GA, Porter S, Halverson GP (2016) A new rock-based definition for the Cryogenian Period (circa 720–635 Ma). Episodes 39:3–8

    Article  Google Scholar 

  • Sifeta K, Roser BP, Kimura JI (2005) Geochemistry, provenance, and tectonic setting of Neoproterozoic metavolcanic and metasedimentary units, Werri area, Northern Ethiopia. J Afr Earth Sc 41:212–223

    Article  Google Scholar 

  • Spence GH, Le Heron DP, Fairchild IJ (2016) Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology 63:253–306

    Article  Google Scholar 

  • Squire RJ, Campbell IH, Allen CM, Wilson CJ (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci Lett 250:116–133

    Google Scholar 

  • Stein M (2003) Tracing the plume material in the Arabian-Nubian Shield. Precambr Res 123:223–234

    Article  Google Scholar 

  • Stern RJ (1985) The najd fault system, Saudi Arabia and Egypt: a late Precambrian rift-related transform system? Tectonics 4:497–511

    Article  Google Scholar 

  • Stern RJ (1994) Arc-assembly and continental collision in the Neoproterozoic African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117

    Article  Google Scholar 

  • Stern RJ (2018) The evolution of plate tectonics. Philosophical Transactions A, 376, 20170406. https://doi.org/10.1098/rsta.2017.0406

  • Stern RJ, Abdelsalam MG (1998) Formation of juvenile continental crust in the Arabian-Nubian Shield: evidence from granitic rocks of the Nakasib suture. NE Sudan Geol Rundschau 87:150–160

    Article  Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  Google Scholar 

  • Stern RJ, Miller NR (2018) Did the transition to plate tectonics cause Neoproterozoic snowball Earth? Terra Nova 30:87–94

    Article  Google Scholar 

  • Stern RJ, Miller NR (2019) Neoproterozoic glaciation—snowball earth hypothesis. Encyclopedia of geology, 2nd ed. https://doi.org/10.1016/B978-0-12-409548-9.12107-4

  • Stern RJ, Avigad D, Miller NR, Beyth M (2006) Geological society of Africa presidential review: evidence for the snowball earth hypothesis in the Arabian-Nubian Shield and the East African Orogen. J Afr Earth Sc 44:1–20

    Article  Google Scholar 

  • Stern RJ, Johnson PR, Ali KA, Mukherjee S (2011) Evidence for early and mid-cryogenian glaciation in the northern Arabian-Nubian Shield (Egypt, Sudan, and western Arabia). In: The geological record of neoproterozoic glaciation. In: Arnaud E, Halverson GP, Shield-Zhou G (eds) Geol Soc London, UK, 2011; Memoirs 36, 277–284

    Google Scholar 

  • Stewart SA (2016) Structural geology of the Rub’ Al-Khali Basin, Saudi Arabia. Tectonics 35:2417–2438

    Article  Google Scholar 

  • Stoeser DB, Stacey JS (1988) Evolution, U–Pb geochronology, and isotope geology of the Pan-African Nabitah orogenic belt of the Saudi Arabian Shield. In: El-Gaby S, Greiling RO (eds) The Pan-African Belt of NE Africa and adjacent areas, Friedr. Vieweg & Sohn, Braunschweig, pp 227–289

    Google Scholar 

  • Sultan M, Arvidson RE, Duncan I, Stern RJ, El Kaliouby M (1988) Extension of the Najd Shear System from Saudi Arabia to the Central Eastern Desert of Egypt based on Integrated Field and Landsat Observations. Tectonics 7:1291–1306

    Article  Google Scholar 

  • Swanson-Hysell NL, Rose CV, Calmet CC, Halverson GP, Hurtgen MT, Maloof AC (2010) Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328:608–611

    Article  Google Scholar 

  • Swanson-Hysell NL, Maloof AC, Condon DJ, Jenkin GR, Alene M, Tremblay MM, Tesema T, Rooney AD, Haileab B (2015) Stratigraphy and geochronology of the Tambien Group, Ethiopia: evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology 43:323–326

    Google Scholar 

  • Tadesse T (1997) The geology of axum area (ND 37-6). Ethiopian Institute of Geological Surveys, Addis Ababa (Memoir No. 9)

    Google Scholar 

  • Tadesse T (1999) Axum sheet geological map. Geological Survey of Ethiopia, Addis Ababa, Ethiopia. 1:250,000 map

    Google Scholar 

  • Tadesse T, Hoshino M, Suzuki K, Iizumi S (2000) Nd, Rb–Sr and Th–U–Pb zircon ages of syn- and post-tectonic granitoids from the Axum area of northern Ethiopia. J Afr Earth Sci 30:313–327

    Article  Google Scholar 

  • Tait J, Delpomdor F, Préat A, Tack A, Straathof G, Nkula VK (2011) Neoproterozoic sequences of the West Congo and Lindi/Ubangi Supergroups in the Congo Craton, Central Africa. In: Arnaud E et al (eds) The geological record of Neoproterozoic glaciations. Geol Soc London Memoir 36:185–193

    Google Scholar 

  • Teklay M, Kröner A, Mezger K (2001) Geochemistry, geochronology and isotope geology of Nakfa intrusive rocks, northern Eritrea: products of a tectonically thickened Neoproterozoic arc crust. J Afr Earth Sci 33:283–301

    Article  Google Scholar 

  • Tostevin R, Clarkson MO, Gangl S, Shields GA, Wood RA, Bowyer F, Penny AM, Stirling CH (2019) Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth Planet Sci Lett 506:104–112

    Article  Google Scholar 

  • Trindade RIF, Macouin M (2007) Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages. CR Geosci 339:200–211

    Article  Google Scholar 

  • Tschopp RH (1967) The general geology of Oman. In: Proceedings of the 7th world petroleum congress 2, pp 231–242

    Google Scholar 

  • Tsige L, Abdelsalam MG (2005) Neoproterozoic-early Paleozoic gravitational tectonic collapse in the southern part of the Arabian-Nubian Shield: the Bulbul Belt of southern Ethiopia. Precambr Res 38:31–297

    Google Scholar 

  • Tziperman E, Halevy I, Johnston DT, Knoll AH, Schrag DP (2011) Biologically induced initiation of Neoproterozoic snowball-Earth events. Proc Natl Acad Sci USA 108:15091–15096

    Article  Google Scholar 

  • Vail JR (1983) Pan-African crustal accretion in northeast Africa. J Afr Earth Sci 1:285–294

    Google Scholar 

  • Veevers JJ (2003) Pan-African is Pan-Gondwanaland: oblique convergence drives rotation during 650–500 Ma assembly. Geology 31:501–504

    Article  Google Scholar 

  • Vernhet R, Youbi N, Chellai EH, Villeneuve M El, Archi A (2012) The Bou-Azzer glaciation: evidence for an Ediacaran glaciation on the West African Craton (Anti-Atlas, Morocco). Precambr Res 196–197:106–112

    Article  Google Scholar 

  • Verri P (1909) Contributo allo studio geografio Della Colonia Eritrea. Bollettino della Societa’ Geografica Italiana, 10, pp 251–320. Carta Geologica 1:1,500,000

    Google Scholar 

  • Vickers-Rich P, Kozdroj W, Kattan FH, Leonov M, Ivantsov A, Johnson PR, Linnemann U, Hofmann M, Al Garni SM, Al Qubsani A, Shamari A, Al Baraki A, Al Kaff MH, Ziolkowska-Kozdroj M, Rich TH, Trusler P, Rich B (2010) Reconnaissance for an Ediacaran fauna, Kingdom of Saudi Arabia. Saudi Geological Survey, Technical Report, SGS-TR-2010-8, p 42, 74 figs., 1 table, 1 pl

    Google Scholar 

  • Vickers-Rich P, Ivantsov A, Kattan FH, Johnson PR, Al Qubsani A, Kashghari W, Leonov M, Rich R, Linnemann U, Hofmann M, Trusler P, Smith J, Yazidi A, Rich B, Al Garni SM, Shamari A, Al Barakati A, Al Kaff MH (2013) In search of the Kingdom’s Ediacarans: the first genuine Metazoans (macroscopic body and trace fossils) from the Neoproterozoic Jibalah Group (Vendian/Ediacaran) on the Arabian Shield. Saudi Geological Survey Technical Report SGS-TR-2013-5, p 21., 19 figs., 1 table

    Google Scholar 

  • Weissbrod T, Sneh A (2002) Sedimentology and paleogeography of the Late Precambrian–Early Cambrian arkosic and conglomeratic facies in the northern margins of the Arabo-Nubian Shield Bulletin. Geol Survey Israel 87:44

    Google Scholar 

  • Whitehouse MJ, Pease V, Al-Khirbash S (2016) Neoproterozoic crustal growth at the margin of the East Gondwana continent—age and isotopic constraints from the easternmost inliers of Oman. Int Geol Rev 58:2046–2064

    Article  Google Scholar 

  • Wilde SA, Youssef K (2000) Significance of SHRIMP dating of the imperial porphyry and associated Dokhan volcanics, Gebel Dokhan, northeastern desert, Egypt. J Afr Earth Sci 31:403–413

    Article  Google Scholar 

  • Wilde SA, Youssef K (2002) A re-evaluation of the origin and setting of the late Precambrian Hammamat Group based on SHRIMP U–Pb dating of detrital zircons from Gebel Umm Tawat, North Eastern Desert, Egypt. J Geol Soc London 159:595–604

    Article  Google Scholar 

  • Williams GE (2008) Proterozoic (pre-Ediacaran) glaciation and the highobliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth Sci Rev 87:61–93

    Article  Google Scholar 

  • Williams GE, Schmidt PW, Young GM (2016) Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci Front 7:555–571

    Article  Google Scholar 

  • Wu C, Yang T, Shields GA, Bian X, Bao B, Ye H, Li W (2020) Termination of Cryogenian ironstone deposition by deep ocean euxinia. Geochem Perspect Lett 15:1–5

    Article  Google Scholar 

  • Yin Z, Zhu M, Davidson EH, Bottjer DJ, Zhao F, Tafforeau P (2015) Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Nat Acad Sci 141:E1453–E1460

    Google Scholar 

  • Zhou MT, Luo T, Huff WD, Yang Z, Zhou G, Gan T, Yang H, Zhange D (2018) Timing the termination of the Doushantuo negative carbon isotope excursion: evidence from U–Pb ages from the Dengying and Liuchapo formations, South China. Sci Bull 63:1431–1438

    Article  Google Scholar 

  • Zhou Y, Pogge von Strandmann PAE, Zhu M, Ling H, Manning C, Li D, He T, Shields GA (2020) Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar. Geology 48:462–467

    Article  Google Scholar 

  • Zimmer M, Kröner A, Jochum KP, Reischmann R, Todt W (1995) The Gabal Gerf complex: a Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem Geol 123:29–51

    Article  Google Scholar 

Download references

Acknowledgements

We thank Peter Johnson and Yasser Abd El-Rahman for thoughtful reviews that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan R. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, N.R., Stern, R.J. (2021). Evolution of the Arabian Nubian Shield and Snowball Earth. In: Hamimi, Z., Fowler, AR., Liégeois, JP., Collins, A., Abdelsalam, M.G., Abd EI-Wahed, M. (eds) The Geology of the Arabian-Nubian Shield. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-72995-0_7

Download citation

Publish with us

Policies and ethics