Skip to main content

On Extended Model Order Reduction for Linear Time Delay Systems

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

Abstract

This chapter presents a so-called extended model-reduction technique for linear delay differential equations. The presented technique preserves the infinite-dimensional nature of the system and facilitates the preservation of properties such as system parameterizations (uncertainties). It is proved in this chapter that the extended model-reduction technique also preserves stability properties and provides a guaranteed a-priori bound on the reduction error. The reduction technique relies on the solution of matrix inequalities that characterize controllability and observability properties for time delay systems. This work presents conditions on the feasibility of these inequalities, and studies the applicability of the extended model reduction to a spatio-temporal model of neuronal activity, known as delay neural fields. Lastly, it discusses the relevance of this technique in the scope of model reduction of uncertain time delay systems, which is supported by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarsnes, U.J.F., van de Wouw, N.: Dynamics of a distributed drill string system: characteristic parameters and stability maps. J. Sound Vib. 417, 376–412 (2018)

    Article  Google Scholar 

  2. Amghayrir, A., Tanguy, N., Brehonnet, P., Vilbe, P., Calvez, L.C.: Laguerre-Gram reduced-order modeling. IEEE Trans. Autom. Control 50(9), 1432–1435 (2005)

    Article  MathSciNet  Google Scholar 

  3. Beattie, C., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Syst. Control Lett. 58(3), 225–232 (2009)

    Article  MathSciNet  Google Scholar 

  4. Besselink, B., Chaillet, A., van de Wouw, N.: Model reduction for linear delay systems using a delay-independent balanced truncation approach. In: Proceeding of the 56th IEEE Conference on Decision and Control, pp. 3793–3798 (2017)

    Google Scholar 

  5. Breiten, T.: Structure-preserving model reduction for integro-differential equations. SIAM J. Control Optim. 54(6), 2992–3015 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bressloff, P.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45(3) (2012)

    Google Scholar 

  7. Chaillet, A., Detorakis, G.I., Palfi, S., Senova, S.: Robust stabilization of delayed neural fields with partial measurement and actuation. Automatica 83, 262–274 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cooke, K.L., Krumme, D.W.: Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24(2), 372–387 (1968)

    Article  MathSciNet  Google Scholar 

  9. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New York (1995)

    Book  Google Scholar 

  10. Dullerud, G.E., Paganini, F.: A Course in Robust control Theory: A Convex Approach, 1st edn. 2000. corr. 2nd printing. softcover version of original hardcover edition 2000 edn. No. 36 in Texts in Applied Mathematics. Springer New York, New York, NY (2010)

    Google Scholar 

  11. Fridman, E.: Introduction to Time-delay Systems: Analysis and Control. Birkhauser Boston (2014)

    Google Scholar 

  12. Fridman, E., Dambrine, M., Yeganefar, N.: On input-to-state stability of systems with time-delay: a matrix inequalities approach. Automatica 44(9), 2364–2369 (2008)

    Article  MathSciNet  Google Scholar 

  13. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their \(L^{\infty }\)-error bounds. Int. J. Control 39(6), 1115–1193 (1984)

    Article  MathSciNet  Google Scholar 

  14. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2018)

  15. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  Google Scholar 

  16. Jarlebring, E., Damm, T., Michiels, W.: Model reduction of time-delay systems using position balancing and delay Lyapunov equations. Math. Control Signals Syst. 25(2), 147–166 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jarlebring, E., Poloni, F.: Iterative methods for the delay Lyapunov equation with T-Sylvester preconditioning. Appl. Numer. Math. 135, 173–185 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kolmanovskii, V., Myshkis, A.: Applied Theory of Functional Differential Equations. Springer, Dordrecht (1992)

    Book  Google Scholar 

  19. Lam, J.: Model reduction of delay systems using Pade approximants. Int. J. Control 57(2), 377–391 (1993)

    Article  MathSciNet  Google Scholar 

  20. Michiels, W., Jarlebring, E., Meerbergen, K.: Krylov-based model order reduction of time-delay systems. SIAM J. Matrix Anal. Appl. 32(4), 1399–1421 (2011)

    Article  MathSciNet  Google Scholar 

  21. Michiels, W., Niculescu, S.: Stability, Control, and Computation for Time-Delay Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA (2014)

    Google Scholar 

  22. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  Google Scholar 

  23. Naderi Lordejani, S., Besselink, B., Chaillet, A., van de Wouw1, N.: Model order reduction for linear time delay systems: a delay-dependent approach based on energy functionals. Automatica 112, 108701 (2020)

    Google Scholar 

  24. Naderi Lordejani, S., Besselink, B., van de Wouw, N.: An extended model order reduction technique for linear delay systems. In: Proceeding of the 58th IEEE Conference on Decision and Control (2019)

    Google Scholar 

  25. Ruehli, A.E., Cangellaris, A.C.: Progress in the methodologies for the electrical modeling of interconnects and electronic packages. Proc. IEEE 89(5), 740–771 (2001)

    Article  Google Scholar 

  26. Saadvandi, M., Meerbergen, K., Jarlebring, E.: On dominant poles and model reduction of second order time-delay systems. Appl. Numer. Math. 62(1), 21–34 (2012)

    Article  MathSciNet  Google Scholar 

  27. Sandberg, H.: An extension to balanced truncation with application to structured model reduction. IEEE Trans. Autom. Control 55(4), 1038–1043 (2010)

    Article  MathSciNet  Google Scholar 

  28. Scarciotti, G., Astolfi, A.: Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays. IEEE Trans. Autom. Control 61(6), 1438–1451 (2016)

    Article  MathSciNet  Google Scholar 

  29. Scherpen, J., Fujimoto, K.: Extended balanced truncation for continuous time LTI systems. In: Proceedings of the European Control Conference (2018)

    Google Scholar 

  30. Veltz, R., Faugeras, O.: Local/global analysis of the stationary solutions of some neural field equations. SIAM J. Appl. Dyn. Syst. 9(3), 954–998 (2010)

    Article  MathSciNet  Google Scholar 

  31. Wittmuess, P., Tarin, C., Keck, A., Arnold, E., Sawodny, O.: Parametric model order reduction via balanced truncation with Taylor series representation. IEEE Trans. Autom. Control 61(11), 3438–3451 (2016)

    Article  MathSciNet  Google Scholar 

  32. van de Wouw, N., Michiels, W., Besselink, B.: Model reduction for delay differential equations with guaranteed stability and error bound. Automatica 55, 132–139 (2015)

    Article  MathSciNet  Google Scholar 

  33. Xu, S., Lam, J., Huang, S., Yang, C.: \(\cal{H}_{\infty }\) model reduction for linear time-delay systems: continuous-time case. Int. J. Control 74(11), 1062–1074 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Naderi Lordejani .

Editor information

Editors and Affiliations

Appendix A. Derivation of X(r)

Appendix A. Derivation of X(r)

We consider \(w_{ij}(r,r')\), for \(i,j=1,2\). This function can be written in the following general form

$$ \begin{aligned} W_{ij}(r,r')&={k_{ij}}\exp \left( {-\frac{{{{\left| {r - r' - {\mu _{ij}}} \right| }^2}}}{{2{\sigma _{ij} }}}} \right) \\&= {k_{ij}}\exp \left( {-\frac{{{{\left| r \right| }^2}}}{{2{\sigma _{ij} }}}} \right) \exp \left( {-\frac{{{{\left| {r' + {\mu _{ij}}} \right| }^2}}}{{2{\sigma _{ij}}}}} \right) \exp \left( {\frac{{r(r'+\mu _{ij})}}{{{\sigma _{ij}}}}} \right) \end{aligned} $$

for some constants \(k_{ij}, \sigma _{ij}\) and \(\mu _{ij}\). We wish to decompose \(w_{ij}(r,r')\) into a multiplication of only-r and only-\(r'\) dependent functions. However, the term \(\exp (r(r'+\mu _{ij})/\sigma _{ij})\) cannot be directly decomposed into such a desirable form. To cope with this issue, we use the Taylor series approximation of order \(\rho \) of this term to obtain

$$\exp \left( {\frac{{r(r'+\mu _{ij})}}{{{\sigma _{ij}}}}} \right) \approx \left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 1&r&{{r^2}} \end{array}}&{...}&r^{\rho } \end{array}} \right] {\left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 1&{\frac{{(r'+\mu _{ij})}}{{{\sigma _{ij}}}}}&{\frac{{(r'+\mu _{ij}){^2}}}{{2\sigma _{ij}^2}}} \end{array}}&{...}&{\frac{{(r'+\mu _{ij}){^{\rho }}}}{{\rho !\sigma _{ij}^\rho }}} \end{array}} \right] ^T},$$

where \(\rho \) is the order of approximation. With this approximation, we can now write

$$\begin{aligned} {w_{ij}}(r,r') \approx {f_{ij}}(r)g_{ij}^T(r') \end{aligned}$$

where

$$\begin{aligned} {f_{ij}}(r)&= \left[ {\begin{array}{*{20}{c}} {{f_{ij,0}}(r)}&\cdots&{{f_{ij,\rho }}(r)} \end{array}} \right] ,\\ {g_{ij}}(r)&= \left[ {\begin{array}{*{20}{c}} {{g_{ij,0}}(r)}&\cdots&{{g_{ij,\rho }}(r)} \end{array}} \right] \end{aligned}$$

with

$$\begin{aligned} {f_{ij,m}}(r)&= {r^{m }}\exp \left( -{\frac{{{{\left| r \right| }^2}}}{{2{\sigma _{ij}}}}} \right) ,\\{g_{ij,m}}(r')&={k_{ij}} \frac{{{{\left( {r' + {\mu _{ij}}} \right) }^{m }}}}{{m!\sigma _{ij}^{m }}}\exp \left( -{\frac{{{{\left| {r' + {\mu _{ij}}} \right| }^2}}}{{2{\sigma _{ij}}}}} \right) ,\quad m = 0,2,...,\rho . \end{aligned}$$

With this representation of \( w(r,r')\), we may choose

$$\begin{aligned} {X_1}&= \left[ {\begin{array}{*{20}{c}} 0\\ {{f_{22}}} \end{array}} \right] ,\quad {X_2} = \left[ {\begin{array}{*{20}{c}} {{f_{12}}} &{}0\\ 0 &{}{{f_{21}}} \end{array}} \right] ,\\ {Y_1}&= \left[ {\begin{array}{*{20}{c}} 0\\ {{g_{22}}} \end{array}} \right] ,\quad {Y_2} = \left[ {\begin{array}{*{20}{c}} 0 &{}{{g_{21}}}\\ {{g_{12}}} &{}0 \end{array}} \right] . \end{aligned}$$

With this choice of \(X_1\) and \(X_2\), we obtain \(N_1 = \rho \) and \(N_2 = 2\rho \). We also note that this choice of \(X_1\) and \(X_2\) leads to \(w_{11}=0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naderi Lordejani, S., Besselink, B., Chaillet, A., van de Wouw, N. (2021). On Extended Model Order Reduction for Linear Time Delay Systems. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_9

Download citation

Publish with us

Policies and ethics