Skip to main content

A Link Between Gramian-Based Model Order Reduction and Moment Matching

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

  • 1264 Accesses

Abstract

We analyze a family of Runge-Kutta-based quadrature algorithms for the approximation of the Gramians of linear time-invariant dynamical systems. The approximated Gramians are used to obtain an approximate balancing transformation similar to the approach used in balanced POD. It is shown that hereby rational interpolation is performed, as the approximants span certain Krylov subspaces. The expansion points are mainly determined by the time step sizes and the eigenvalues of the matrices given by the Butcher tableaus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. Soc. Ind. Appl. Math. (2005). ISBN: 978-0-898-71529-3

    Google Scholar 

  2. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21, 331–358 (2014). https://doi.org/10.1007/s11831-014-9111-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.): Model Reduction and Approximation: Theory and Algorithms. SIAM (2017). ISBN: 978-1-611974-81-2

    Google Scholar 

  4. Benner, P., Hinze, M., ter Maten, E. (eds.): Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74. Springer, Dordrecht, The Netherlands (2011). ISBN: 978-94-007-0089-5

    Google Scholar 

  5. Bertram, C., Faßbender, H.: Lyapunov and Sylvester equations: a quadrature framework. arXiv e-prints arXiv:1903.05383 (2019)

  6. Butcher, J.: Numerical Methods for Ordinary Differential Equations. Wiley (2016). ISBN: 978-1-119-12150-3

    Google Scholar 

  7. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18(85), 50–64 (1964). https://doi.org/10.2307/2003405

    Article  MathSciNet  MATH  Google Scholar 

  8. Butcher, J.C.: On the implementation of implicit Runge-Kutta methods. BIT 16(3), 237–240 (1976). https://doi.org/10.1007/bf01932265

    Article  MathSciNet  MATH  Google Scholar 

  9. Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1), 395–421 (2000). https://doi.org/10.1016/S0377-0427(00)00396-4. Numerical Analysis 2000. Vol. III: Linear Algebra

  10. Gallivan, K., Vandendorpe, A., Dooren, P.V.: Model reduction via truncation: an interpolation point of view. Linear Algebra Appl. 375, 115–134 (2003). https://doi.org/10.1016/S0024-3795(03)00648-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, University of Illinois at Urbana-Champaign (1997)

    Google Scholar 

  12. Gugercin, S., Sorensen, D., Antoulas, A.: A modified low-rank Smith method for large-scale Lyapunov equations. Numer. Algorithms 32, 27–55 (2003). https://doi.org/10.1023/A:1022205420182

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer (2006). ISBN: 978-3-540-30666-5

    Google Scholar 

  14. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer (1993). ISBN: 978-3-540-78862-1

    Google Scholar 

  15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd edn. Springer (1996). ISBN: 978-3-642-05221-7

    Google Scholar 

  16. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge Texts in Applied Mathematics. Cambridge University Press (2008). https://doi.org/10.1017/CBO9780511995569

  17. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Ph.D. thesis, OvGU Magdeburg (2016)

    Google Scholar 

  18. Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12(6), 519–535 (2002). https://doi.org/10.1002/rnc.657

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002). https://doi.org/10.1137/S0895479801384937

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, A., Wachspress, E.: Solution of Lyapunov equations by alternating direction implicit iteration. Comput. Math. Appl. 21(9), 43–58 (1991). https://doi.org/10.1016/0898-1221(91)90124-M

  21. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control AC-26, 17–32 (1981). https://doi.org/10.1109/TAC.1981.1102568

  22. Opmeer, M.: Model order reduction by balanced proper orthogonal decomposition and by rational interpolation. IEEE Trans. Autom. Control AC-57, 472–477 (2012). https://doi.org/10.1109/TAC.2011.2164018

  23. Peaceman, D., Rachford, H., Jr.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955). https://doi.org/10.1137/0103003

    Article  MathSciNet  MATH  Google Scholar 

  24. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. I. J. Bifurcat. Chaos 15(3), 997–1013 (2005). https://doi.org/10.1142/S0218127405012429

    Article  MathSciNet  MATH  Google Scholar 

  25. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016). https://doi.org/10.1137/130912839

    Article  MathSciNet  MATH  Google Scholar 

  26. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002). https://doi.org/10.2514/2.1570

    Article  Google Scholar 

  27. Wolf, T., Panzer, H.: The ADI iteration for Lyapunov equations implicitly performs H2 pseudo-optimal model order reduction. Int. J. Control 89(3), 481–493 (2016). https://doi.org/10.1080/00207179.2015.1081985

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bertram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertram, C., Faßbender, H. (2021). A Link Between Gramian-Based Model Order Reduction and Moment Matching. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_6

Download citation

Publish with us

Policies and ethics