Skip to main content

Clustering-Based Model Order Reduction for Nonlinear Network Systems

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

Abstract

Clustering by projection has been proposed as a way to preserve network structure in linear multi-agent systems. Here, we extend this approach to a class of nonlinear network systems. Additionally, we generalize our clustering method which restores the network structure in an arbitrary reduced-order model obtained by projection. We demonstrate this method on a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis, K.M. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 3–58. Springer, US (2010). https://doi.org/10.1007/978-1-4419-5757-3_1

  2. Beattie, C.A., Gugercin, S., Wyatt, S.: Inexact solves in interpolatory model reduction. Linear Algebra Appl. 436(8), 2916–2943 (2012). https://doi.org/10.1016/j.laa.2011.07.015

    Article  MathSciNet  MATH  Google Scholar 

  3. Besselink, B., Sandberg, H., Johansson, K.H.: Clustering-based model reduction of networked passive systems. IEEE Trans. Autom. Control 61(10), 2958–2973 (2016). https://doi.org/10.1109/TAC.2015.2505418

    Article  MathSciNet  MATH  Google Scholar 

  4. Chapman, A., Mesbahi, M.: UAV flocking with wind gusts: adaptive topology and model reduction. In: American Control Conference (ACC), pp. 1045–1050 (2011). https://doi.org/10.1109/ACC.2011.5990799

  5. Cheng, X., Kawano, Y., Scherpen, J.M.A.: Graph structure-preserving model reduction of linear network systems. In: European Control Conference (ECC), pp. 1970–1975 (2016). https://doi.org/10.1109/ECC.2016.7810580

  6. Cheng, X., Kawano, Y., Scherpen, J.M.A.: Model reduction of multi-agent systems using dissimilarity-based clustering. IEEE Trans. Autom. Control (2018). https://doi.org/10.1109/TAC.2018.2853578

    Article  MATH  Google Scholar 

  7. Godsil, C., Royle, G.: Algebraic graph theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

    Google Scholar 

  9. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979). https://doi.org/10.2307/2346830

  10. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng., vol. 45, pp. 261–306. Springer, Berlin/Heidelberg, Germany (2005)

    Google Scholar 

  11. Ishizaki, T., Kashima, K., Girard, A., Imura, J., Chen, L., Aihara, K.: Clustered model reduction of positive directed networks. Automatica J. IFAC 59, 238–247 (2015). https://doi.org/10.1016/j.automatica.2015.06.027

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishizaki, T., Kashima, K., Imura, J., Aihara, K.: Model reduction and clusterization of large-scale bidirectional networks. IEEE Trans. Autom. Control 59(1), 48–63 (2014). https://doi.org/10.1109/TAC.2013.2275891

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishizaki, T., Ku, R., Imura, J.: Clustered model reduction of networked dissipative systems. In: American Control Conference (ACC), pp. 3662–3667 (2016). https://doi.org/10.1109/ACC.2016.7525482

  14. Jongsma, H.J., Mlinarić, P., Grundel, S., Benner, P., Trentelman, H.L.: Model reduction of linear multi-agent systems by clustering with \(\cal{H}_2\) and \(\cal{H}_\infty \) error bounds. Math. Control Signals Syst. 30(6) (2018). https://doi.org/10.1007/s00498-018-0212-6

  15. Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I, Regular Papers 57(1), 213–224 (2010). https://doi.org/10.1109/TCSI.2009.2023937

  16. Martini, S., Egerstedt, M., Bicchi, A.: Controllability decompositions of networked systems through quotient graphs. In: 47th IEEE Conference on Decision and Control (CDC), pp. 5244–5249 (2008). https://doi.org/10.1109/CDC.2008.4739213

  17. Martini, S., Egerstedt, M., Bicchi, A.: Controllability analysis of multi-agent systems using relaxed equitable partitions. Int. J. Syst., Control Commun. 2(1/2/3), 100–121 (2010). https://doi.org/10.1504/IJSCC.2010.031160

  18. Massioni, P., Scorletti, G.: Consensus analysis of large-scale nonlinear homogeneous multiagent formations with polynomial dynamics. Internat. J. Robust Nonlinear Control 28(17), 5605–5617 (2018). https://doi.org/10.1002/rnc.4334

    Article  MathSciNet  MATH  Google Scholar 

  19. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2010). https://doi.org/10.1515/9781400835355

  20. Mlinarić, P., Grundel, S., Benner, P.: Efficient model order reduction for multi-agent systems using QR decomposition-based clustering. In: 54th IEEE Conference on Decision and Control (CDC), pp. 4794–4799 (2015). https://doi.org/10.1109/CDC.2015.7402967

  21. Mlinarić, P., Grundel, S., Benner, P.: Clustering-based model order reduction for multi-agent systems with general linear time-invariant agents. In: 22nd International Symposium on Mathematical Theory of Networks and Systems (MTNS), pp. 230–235. Minneapolis, MN, USA (2016). http://hdl.handle.net/11299/181518

  22. Monshizadeh, N., Trentelman, H.L., Camlibel, M.K.: Stability and synchronization preserving model reduction of multi-agent systems. Syst. Control Lett. 62(1), 1–10 (2013). https://doi.org/10.1016/j.sysconle.2012.10.011

    Article  MathSciNet  MATH  Google Scholar 

  23. Monshizadeh, N., Trentelman, H.L., Camlibel, M.K.: Projection-based model reduction of multi-agent systems using graph partitions. IEEE Trans. Control Netw. Syst. 1(2), 145–154 (2014). https://doi.org/10.1109/TCNS.2014.2311883

    Article  MathSciNet  MATH  Google Scholar 

  24. Rahmani, A., Ji, M., Mesbahi, M., Egerstedt, M.: Controllability of multi-agent systems from a graph-theoretic perspective. SIAM J. Control Optim. 48(1), 162–186 (2009). https://doi.org/10.1137/060674909

    Article  MathSciNet  MATH  Google Scholar 

  25. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007). https://doi.org/10.1016/j.cosrev.2007.05.001

  26. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Spectral relaxation for k-means clustering. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 1057–1064 (2001). https://papers.nips.cc/paper/1992-spectral-relaxation-for-k-means-clustering.pdf

Download references

Acknowledgements

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the project SA 3477/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Mlinarić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benner, P., Grundel, S., Mlinarić, P. (2021). Clustering-Based Model Order Reduction for Nonlinear Network Systems. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_4

Download citation

Publish with us

Policies and ethics