Skip to main content

A Non-stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

Abstract

In this contribution, we aim to satisfy the demand for a publicly available benchmark for parametric model order reduction that is scalable both in degrees of freedom as well as parameter dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, the core feature is the unified form language (UFL) [1] that also other packages, e.g., firedrake [20] use.

References

  1. Alnæs, M.S.: UFL: a finite element form language, chap. 17. Springer (2012). https://doi.org/10.1146/10.1145/2566630

  2. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). https://doi.org/10.1146/10.11588/ans.2015.100.20553

  3. Balicki, L., Mlinarić, P., Rave, S., Saak, J.: System-theoretic model order reduction with pyMOR. Proc. Appl. Math. Mech. 19(1) (2019). https://doi.org/10.1146/10.1002/pamm.201900459

  4. Ballani, J., Kressner, D.: Reduced basis methods: from low-rank matrices to low-rank tensors. SIAM J. Sci. Comput. 38(4), A2045–A2067 (2016). https://doi.org/10.1146/10.1137/15M1042784

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballarin, F., Rozza, G.: RBniCS. https://mathlab.sissa.it/rbnics

  6. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Martini, I., Ohlberger, M.: Comparison of methods for parametric model order reduction of time-dependent problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, pp. 377–407. SIAM (2017). https://doi.org/10.1146/10.1137/1.9781611974829.ch9

  7. Benner, P., Werner, S.W.R.: MORLAB – Model Order Reduction LABoratory (version 5.0) (2019). https://doi.org/10.1146/10.5281/zenodo.3332716. See also: http://www.mpi-magdeburg.mpg.de/projects/morlab

  8. Chair of Automatic Control TUM, Technical University of Munich: psssMOR. https://www.mw.tum.de/rt/forschung/modellordnungsreduktion/software/psssmor/

  9. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2015). https://doi.org/10.1146/10.1137/1.9781611974065.ch1

  10. Geuzaine, C., Remacle, J.F.: Gmsh Reference Manual (2010). http://www.geuz.org/gmsh/doc/texinfo/gmsh.pdf

  11. Haasdonk, B.: Reduced basis methods for parametrized PDEs–a tutorial introduction for stationary and instationary problems, chap. 2, pp. 65–136. SIAM Publications (2017). https://doi.org/10.1146/10.1137/1.9781611974829.ch2

  12. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations, 1 edn. Springer Briefs in Mathematics. Springer International Publishing (2016). https://doi.org/10.1146/10.1007/978-3-319-22470-1. http://www.springer.com/us/book/9783319224695

  13. Himpe, C.: emgr – EMpirical GRamian framework (version 5.4). http://gramian.de (2018). https://doi.org/10.1146/10.5281/zenodo.1241532

  14. Logg, A., Mardal, K.A., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84, 1 edn. Springer, Berlin (2012)

    Google Scholar 

  15. Milk, R., Rave, S., Schindler, F.: pyMOR - generic algorithms and interfaces for model order reduction. SIAM J. Sci. Comput. 38(5), S194–S216 (2016). https://doi.org/10.1146/10.1137/15M1026614

    Article  MathSciNet  MATH  Google Scholar 

  16. Negri, F.: redbKIT Version 2.2. http://redbkit.github.io/redbKIT/ (2016)

  17. Patera, A., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Version 1.0, Copyright MIT (2006). https://orms.mfo.de/project?id=316

  18. pyMOR developers and contributors: pyMOR - model order reduction with Python. https://pymor.org

  19. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. La Matematica per il 3+2, vol. 92. Springer International Publishing (2016). https://doi.org/10.1146/10.1007/978-3-319-15431-2. https://www.springer.com/us/book/9783319154305

  20. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43(3), 24:1–24:27 (2016). https://doi.org/10.1146/10.1145/2998441

  21. RBmatlab: https://www.morepas.org/software/rbmatlab/

  22. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008). https://doi.org/10.1146/10.1007/s11831-008-9019-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Saak, J., Köhler, M., Benner, P.: M-M.E.S.S. – the matrix equations sparse solvers library. https://doi.org/10.1146/10.5281/zenodo.632897. See also: https://www.mpi-magdeburg.mpg.de/projects/mess

  24. The MORwiki Community: MORwiki - Model Order Reduction Wiki. http://modelreduction.org

Download references

Acknowledgements

The authors would like to thank Christian Himpe, Petar Mlinarić and Steffen W. R. Werner for helpful comments and discussions during the creation of the model.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure. Funded by German Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of Education and Research) under grant number 05M18PMA in the programme “Mathematik für Innovationen in Industrie und Dienstleistungen”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Saak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rave, S., Saak, J. (2021). A Non-stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_16

Download citation

Publish with us

Policies and ethics