Annaert J, Van Osselaer S, Verstraete B (2009) Performance evaluation of portfolio insurance strategies using stochastic dominance criteria. J Bank Finance 33(2):272–280
CrossRef
Google Scholar
Ameur HB, Prigent JL (2014) Portfolio insurance: Gap risk under conditional multiples. Eur J Oper Res 236(1):238–253
MathSciNet
CrossRef
Google Scholar
Katsikis VN, Mourtas SD (2020) Optimal portfolio insurance under nonlinear transaction costs. Journal of Modeling and Optimization. 12(2):117–124
CrossRef
Google Scholar
Barucci, E., Fontana, C.: Portfolio, Insurance and Saving Decisions. In: Financial Markets Theory. Springer, London. 55–121 (2017)
Google Scholar
Heckel T, Soupé F, de Carvalho RL (2016) Portfolio insurance with adaptive protection. Journal of Investment Strategies. 5:1–15
CrossRef
Google Scholar
Annaert J, Ceuster MD, Vandenbroucke J (2019) Mind the Floor: Enhance Portfolio Insurance without Borrowing. The Journal of Investing. 28:39–50
CrossRef
Google Scholar
George, J., Trainor, W.: Portfolio insurance using leveraged ETFs. Available at SSRN 3055199 (2017)
Google Scholar
Maalej H, Prigent JL (2016) On the stochastic dominance of portfolio insurance strategies. Journal of Mathematical Finance. 6(1):14
CrossRef
Google Scholar
Biedova, O., Steblovskaya, V.: Multiplier optimization for constant proportion portfolio insurance (cppi) strategy. International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd. 23, 1–22 (2020)
Google Scholar
Dong, Y., Zheng, H.: Optimal investment of DC pension plan under short-selling constraints and portfolio insurance. Insurance: Mathematics and Economics. 85, 47–59 (2020)
Google Scholar
Persio, L.D., Oliva, I., Wallbaum, K.: Options on constant proportion portfolio insurance with guaranteed minimum equity exposure. Appl Stochastic Models Bus Ind. 1–15 (2020)
Google Scholar
Dichtl H, Drobetz W, Wambach M (2017) A bootstrap-based comparison of portfolio insurance strategies. The European Journal of Finance. 23(1):31–59
CrossRef
Google Scholar
Baofeng, Y., Hailong, L.: Research of dynamical portfolio insurance strategies in shanghai security market. Management Review. 7 (2005)
Google Scholar
El-Adaway IH, Kandil AA (2010) Construction risks: single versus portfolio insurance. Journal of Management in Engineering. 26(1):2–8
CrossRef
Google Scholar
Hohmann, R.: Constant-proportion-portfolio-insurance, In: Portfolio Insurance reloaded. Springer. 9–23 (2018)
Google Scholar
Hohmann, R.: Portfolio Insurance Reloaded. Springer (2018)
Google Scholar
Escobar M, Lichtenstern A, Zagst R (2020) Behavioral portfolio insurance strategies. Fin Markets Portfolio Mgmt 34:353–399
CrossRef
Google Scholar
Xu, M., Sherris, M., Shao, A.W.: Portfolio insurance strategies for a target annuitization fund. Available at SSRN 3417818 (2019)
Google Scholar
Asano T, Osaki Y (2020) Portfolio allocation problems between risky and ambiguous assets. Ann Oper Res 284:63–79
MathSciNet
CrossRef
Google Scholar
Bertrand, P., luc Prigent, J.: Equilibrium of financial derivative markets under portfolio insurance constraints. Economic Modelling. 52, 278–291 (2016)
Google Scholar
Aliprantis CD, Brown DJ, Werner J (2000) Minimum-cost portfolio insurance. Journal of Economic Dynamics & Control. 24:1703–1719
MathSciNet
CrossRef
Google Scholar
Katsikis VN (2007) Computational methods in portfolio insurance. Appl Math Comput 189(1):9–22
MathSciNet
MATH
Google Scholar
Katsikis VN (2008) Computational methods in lattice-subspaces of C[a, b] with applications in portfolio insurance. Appl Math Comput 200:204–219
MathSciNet
MATH
Google Scholar
Katsikis, V.N.: Computational and mathematical methods in portfolio insurance - A MATLAB-based approach. In: Matlab - Modelling, Programming and Simulations. IntechOpen (2010)
Google Scholar
Katsikis VN, Mourtas SD (2019) A heuristic process on the existence of positive bases with applications to minimum-cost portfolio insurance in C[a, b]. Appl Math Comput 349:221–244
MathSciNet
MATH
Google Scholar
Katsikis, V.N., Mourtas, S.D.: ORPIT: A Matlab Toolbox for Option Replication and Portfolio Insurance in Incomplete Markets. Computational Economics. (2019)
Google Scholar
Katsikis VN, Mourtas SD, Stanimirović PS, Li S, Cao X (2020) Time-varying minimum-cost portfolio insurance under transaction costs problem via beetle antennae search algorithm (BAS). Appl Math Comput 385:
MathSciNet
MATH
Google Scholar
Lobo MS, Fazel M, Boyd S (2007) Portfolio optimization with linear and fixed transaction costs. Ann Oper Res 152:341–365
MathSciNet
CrossRef
Google Scholar
Jiang, X., Li, S.: BAS: Beetle Antennae Search Algorithm for Optimization Problems. arXiv preprint. abs/1710.10724 (2017)
Google Scholar
Wu Q, Lin H, Jin Y, Chen Z, Li S, Chen D (2020) A new fallback beetle antennae search algorithm for path planning of mobile robots with collision-free capability. Soft Comput 24:2369–2380
CrossRef
Google Scholar
Wu Q, Shen X, Jin Y, Chen Z, Li S, Khan AH, Chen D (2019) Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles. Sensors. 19:1758
CrossRef
Google Scholar
Khan, A.T., Cao, X., Li, S., Hu, B., Katsikis, V.N.: Quantum beetle antennae search: A novel technique for the constrained portfolio optimization problem. SCIENCE CHINA Information Sciences (2020)
Google Scholar
Khan AH, Cao X, Li S, Katsikis VN, Liao L (2020) BAS-ADAM: an ADAM based approach to improve the performance of beetle antennae search optimizer. IEEE/CAA Journal of Automatica Sinica. 7(2):461–471
CrossRef
Google Scholar
Jiang X, Lin Z, He T, Ma X, Ma S, Li S (2020) Optimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategies. IEEE Access. 8:15459–15471
CrossRef
Google Scholar
Medvedeva, M.A., Katsikis, V.N., Mourtas, S.D., Simos, T.E.: Randomized time-varying knapsack problems via binary beetle antennae search algorithm: Emphasis on applications in portfolio insurance. Math Meth Appl Sci. 1–11 (2020)
Google Scholar
Khan, A.H., Cao, X., Katsikis, V.N., Stanimirovic, P., Brajevic, I., Li, S., Kadry, S., Nam, Y.: Optimal Portfolio Management for Engineering Problems Using Nonconvex Cardinality Constraint: A Computing Perspective. IEEE Access. 1–1 (2020)
Google Scholar
Yang X (2010) Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio Inspired Comput. 2(2):78–84
CrossRef
Google Scholar
Yang, X.: Nature-inspired optimization algorithms. Elsevier (2014)
Google Scholar
Yang, X.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization, (NICSO 2010). Studies in Computational Intelligence. Springer, Berlin, Heidelberg. 284, 65–74 (2010)
Google Scholar
Deb, K.: Optimization for Engineering Design: Algorithms and Examples. PHI. second ed. (2013)
Google Scholar