Skip to main content

Tabu-Driven Quantum Neighborhood Samplers

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12692)


Combinatorial optimization is an important application targeted by quantum computing. However, near-term hardware constraints make quantum algorithms unlikely to be competitive when compared to high-performing classical heuristics on large practical problems. One option to achieve advantages with near-term devices is to use them in combination with classical heuristics. In particular, we propose using quantum methods to sample from classically intractable distributions – which is the most probable approach to attain a true provable quantum separation in the near-term – which are used to solve optimization problems faster. We numerically study this enhancement by an adaptation of Tabu Search using the Quantum Approximate Optimization Algorithm (QAOA) as a neighborhood sampler. We show that QAOA provides a flexible tool for exploration-exploitation in such hybrid settings and can provide evidence that it can help in solving problems faster by saving many tabu iterations and achieving better solutions.


  • Quantum computing
  • Combinatorial optimization
  • Tabu search

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72904-2_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-72904-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1.

    When using BIPOP-CMAES, we run circuits with 1000 measurements to estimate expectation values. The optimizer stops when it has reached 2000 evaluations. We obtained great performances in terms of averaged ratios (as the evaluations divided by the optimum of the subproblem), superior to 0.97 at the considered depths.


  1. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019).

    CrossRef  Google Scholar 

  2. Arute, F., et al.: Quantum approximate optimization of non-planar graph problems on a planar superconducting processor (2020)

    Google Scholar 

  3. Bäck, T.: Evolutionary Algorithms in Theory and Practice - Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    CrossRef  Google Scholar 

  4. Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2019)

    CrossRef  Google Scholar 

  5. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990).

  6. Beasley, J.: QUBO instances link - file bqpgka.txt.

  7. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019).

    CrossRef  Google Scholar 

  8. Beyer, H.: The theory of evolution strategies. In: Natural Computing Series. Springer, Berlin (2001).

  9. Booth, M., Reinhardt, S.P.: Partitioning optimization problems for hybrid classical/quantum execution technical report (2017)

    Google Scholar 

  10. Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances arXiv:1812.04170 (2018)

  11. Bravyi, S., Gosset, D., König, R.: Quantum advantage with shallow circuits. Science 362(6412), 308–311 (2018).,

  12. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6 (2016).,

  13. Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018).

  14. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1+(\(\lambda \), \(\lambda \))) genetic algorithm. Algorithmica 80(5), 1658–1709 (2018).

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Bosman, P.A.N. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 777–784. ACM (2017).

  16. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281, October 2018.

  17. Dunjko, V., Ge, Y., Cirac, J.I.: Computational speedups using small quantum devices. Phys. Rev. Lett. 121, 250501 (2018).,

  18. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2020)

    CrossRef  Google Scholar 

  19. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014)

    Google Scholar 

  20. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016)

    Google Scholar 

  21. Glover, F., Hao, J.K.: Efficient evaluations for solving large 0–1 unconstrained quadratic optimisation problems. Int. J. Metaheuristics 1(1), 3–10 (2010).

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. Glover, F., Kochenberger, G., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998).

    CrossRef  MATH  Google Scholar 

  23. Glover, F.W.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 1537–1544. Springer, US, Boston, MA (2013).

  24. Glover, F.W., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR 8, 239–253 (2010)

    MathSciNet  CrossRef  Google Scholar 

  25. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: ACM-GECCO Genetic and Evolutionary Computation Conference. Montreal, Canada, July 2009.

  26. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    CrossRef  Google Scholar 

  27. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014).

    MathSciNet  CrossRef  MATH  Google Scholar 

  28. Kochenberger, G.A., Glover, F.: A unified framework for modeling and solving combinatorial optimization problems: a tutorial. Multiscale Optim. Methods Appl. 101–124. Springer, US, Boston, MA (2006).

  29. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-output sequences. Soft. Comput. 15(9), 1675–1687 (2011)

    CrossRef  Google Scholar 

  30. Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2(2), 023074 (2019)

    CrossRef  Google Scholar 

  31. Lü, Z., Glover, F.W., Hao, J.K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)

    MathSciNet  CrossRef  Google Scholar 

  32. Medvidovic, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm (2020)

    Google Scholar 

  33. Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018).

    CrossRef  Google Scholar 

  34. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards algorithm selection in near-term quantum optimization. Quantum Sci. Technol. 5(4), 044009 (2020).

    CrossRef  Google Scholar 

  35. Niko, A., Yoshihikoueno, Y., Brockhoff, D., Chan, M.: ARF1: CMA-ES/pycma: r3.0.3, April 2020.

  36. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004).

    MathSciNet  CrossRef  MATH  Google Scholar 

  37. Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica (Vilnius) 17(2), 279–296 (2006)

    MathSciNet  CrossRef  Google Scholar 

  38. Peng, T., Harrow, A.W., Ozols, M., Wu, X.: Simulating large quantum circuits on a small quantum computer. Phys. Rev. Lett. 125(15), 150504 (2020).,

  39. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    CrossRef  Google Scholar 

  40. Rennela, M., Laarman, A., Dunjko, V.: Hybrid divide-and-conquer approach for tree search algorithms (2020)

    Google Scholar 

  41. Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 65, 845–869 (2016)

    MathSciNet  CrossRef  Google Scholar 

  42. Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing, arXiv:1901.01903 (2019)

  43. Wang, Y., Lü, Z., Glover, F.W., Hao, J.K.: Path relinking for unconstrained binary quadratic programming. Eur. J. Oper. Res. 223, 595–604 (2012)

    MathSciNet  CrossRef  Google Scholar 

  44. Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: Proceeding of Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 1452–1459. ACM (2007).

  45. Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Benchmarking the quantum approximate optimization algorithm. Quantum Inf. Process. 19(7), 197 (2020).

    MathSciNet  CrossRef  Google Scholar 

  46. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices, arXiv:1812.01041 (2018)

Download references


CM, TB and VD acknowledge support from Total. This work was supported by the Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium programme (project number 024.003.037). This research is also supported by the project NEASQC funded from the European Union’s Horizon 2020 research and innovation programme (grant agreement No 951821).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Charles Moussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Moussa, C., Wang, H., Calandra, H., Bäck, T., Dunjko, V. (2021). Tabu-Driven Quantum Neighborhood Samplers. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)