Skip to main content

Intracranial Aneurysm Rupture Prediction with Computational Fluid Dynamics Point Clouds

  • Conference paper
  • First Online:
Cerebral Aneurysm Detection and Analysis (CADA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12643))

Included in the following conference series:

  • 669 Accesses

Abstract

Intracranial aneurysms frequently cause subarachnoid hemorrhage—a life-threatening condition with a high mortality and morbidity rate. State-of-the-art methods of the rupture risk prediction combine demographic, clinical, morphological, and computational fluid dynamics based hemodynamic parameters. We propose a method of blending morphological features, computational fluid dynamics parameters, and patient demographic features. The shape and wall-shear-stress at each point of the aneurysm are encoded with a deep point cloud neural network and extended by additional location encodings of the aneurysm as well as age and sex of the patient. On this concatenated feature vector, an MLP infers the probability of rupture for a given cerebral aneurysm. The proposed network was trained on the CADA - rupture risk estimation challenge set of 109 aneurysms. The proposed method achieves an accuracy of 0.64 and an F2-score of 0.73 on the private CADA - rupture risk estimation challenge test set of 30 aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teunissen, L.L., et al.: Risk Factors for Subarachnoid Hemorrhage (1996)

    Google Scholar 

  2. Can, A., et al.: Association of intracranial aneurysm rupture with smoking duration, intensity, and cessation (2017)

    Google Scholar 

  3. Chabert, S., et al.: Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture (2017)

    Google Scholar 

  4. Detmer, F.J., et al.: Extending statistical learning for aneurysm rupture assessment to Finnish and Japanese populations using morphology, hemodynamics, and patient characteristics (2019)

    Google Scholar 

  5. Cebral, J.R.: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture (2015)

    Google Scholar 

  6. Detmer, F.J., et al.: Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location (2019)

    Google Scholar 

  7. Thompson, B.G., et al.: Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association (2015)

    Google Scholar 

  8. Lindgren, A.E., et al.: Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort (2016)

    Google Scholar 

  9. Tanioka, S., et al.: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters (2020)

    Google Scholar 

  10. Paliwal, N., et al.: Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning (2018)

    Google Scholar 

  11. Xiang, J., et al.: Hemodynamic–morphologic discriminants for intracranial aneurysm rupture (2011)

    Google Scholar 

  12. Suzuki, M., et al.: Classification model for cerebral aneurysm rupture prediction using medical and blood-flow-simulation data (2019)

    Google Scholar 

  13. Chen, G., et al.: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study (2020)

    Google Scholar 

  14. Kleinloog, R., et al.: Risk factors for intracranial aneurysm rupture: a systematic review (2018)

    Google Scholar 

  15. Chandra, A.R., et al.: Initial study of the radiomics of intracranial aneurysms using Angiographic Parametric Imaging (API) to evaluate contrast flow changes (2019)

    Google Scholar 

  16. Podgorsak, A.R., et al.: Automatic radiomic feature extraction using deep learning for angiographic parametric imaging of intracranial aneurysms (2020)

    Google Scholar 

  17. Liu, Q., et al.: Bifurcation configuration is an independent risk factor for aneurysm rupture irrespective of location (2019)

    Google Scholar 

  18. Liu, Q., et al.: Prediction of aneurysm stability using a machine learning model based on pyradiomics-derived morphological features (2019)

    Google Scholar 

  19. Juchler, N., et al.: Radiomics approach to quantify shape irregularity from crowd-based qualitative assessment of intracranial aneurysms (2020)

    Google Scholar 

  20. Yang, L., Chakraborty, R.: A GMM based algorithm to generate point-cloud and its application to neuroimaging (2019)

    Google Scholar 

  21. Gutierrez-Becker, B., Wachinger, C.: Deep multi-structural shape analysis: application to neuroanatomy (2018)

    Google Scholar 

  22. Wang, Y., Sun, Y., Liu, Z., Sarma, S., Bronstein, M., Solomon, J.: Dynamic graph CNN for learning on point clouds (2018)

    Google Scholar 

  23. Ruizhongtai Qi, C., Su, H., Mo, K., Guibas, L.: PointNet: deep learning on point sets for 3D classification and segmentation (2016)

    Google Scholar 

  24. CADA rupture risk estimation challenge. https://cada-rre.grand-challenge.org/. Accessed 05 Oct 2020

  25. AneuRisk dataset. http://ecm2.mathcs.emory.edu/aneuriskweb/repository. Accessed 26 Nov 2020

  26. Aneux dataset. https://www.aneux.ch/home/internal/. Accessed 26 Nov 2020

  27. Database of Cerebral Artery Geometries including Aneurysms at the Middle Cerebral Artery Bifurcation. https://figshare.shef.ac.uk/articles/dataset/Database_of_Cerebral_Artery_Geometries_including_Aneurysms_at_the_Middle_Cerebral_Artery_Bifurcation/4806910/1. Accessed 26 Nov 2020

  28. Goubergrits, L., et al.: In vitro study of near-wall flow in a cerebral aneurysm model with and without coils (2010)

    Google Scholar 

  29. Wellnhofer, E., Osman, J., Kertzscher, U., Affeld, K., Fleck, E., Goubergrits, L.: Flow simulation studies in coronary arteries—impact of side-branches (2010)

    Google Scholar 

  30. Scheel, P., Ruge, Ch., Petruch, U.R., Schoening, M.: Color duplex measurement of cerebral blood flow volume in healthy adults (2000)

    Google Scholar 

  31. Kato, T., Indo, T., Yoshida, E., Iwasaki, Y., Sone, M., Sobue, G.: Contrast-enhanced 2D cine Phase MR angiography for measurement of basilar artery blood flow in posterior circulation ischemia (2002)

    Google Scholar 

  32. Cebral, J.R., Castro, M.A., Putman, C.M., Alperin, N.: Flow–area relationship in internal carotid and vertebral arteries (2008)

    Google Scholar 

  33. Goubergrits, L., Schaller, J., Kertzscher, U., Woelken, T., Ringelstein, M., Spuler, A.: Hemodynamic impact of cerebral aneurysm endovascular treatment devices: coils and flow diverters (2014)

    Google Scholar 

  34. Berg, P., et al.: Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment (2019)

    Google Scholar 

  35. Wermer, M.J.H., van der Schaaf, I.C., Algra, A., Rinkel, G.J.E.: Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ivantsits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivantsits, M., Goubergrits, L., Brüning, J., Spuler, A., Hennemuth, A. (2021). Intracranial Aneurysm Rupture Prediction with Computational Fluid Dynamics Point Clouds. In: Hennemuth, A., Goubergrits, L., Ivantsits, M., Kuhnigk, JM. (eds) Cerebral Aneurysm Detection and Analysis. CADA 2020. Lecture Notes in Computer Science(), vol 12643. Springer, Cham. https://doi.org/10.1007/978-3-030-72862-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72862-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72861-8

  • Online ISBN: 978-3-030-72862-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics