Skip to main content

The Construction of Plant Litter Decomposition Curves

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

Quantitative analysis of changes undergone by plant litter during decomposition is a main focus of theoretical and empirical studies of plant litter decomposition. Decomposition curves are most often described by systems of differential equations whose closed-form solutions enable simple estimation of fundamental parameters such as litter decay rate(s). Other potential applications of mathematical models of litter decomposition include analysis of the controls of plant traits vs. decomposers on decomposition and predictions of how litter decomposition responds to ecosystem changes. This chapter provides an overview of the main approaches to modelling plant litter decomposition and drawing decomposition curves produced under various assumptions. The Olson’s negative exponential model has been widely used by freshwater ecologists to summarize and compare results of field and laboratory studies. Yet, it is still unclear where and when the assumption of time invariance of litter decay rate underlying the simple model is met. Process-based models incorporating litter heterogeneity and/or consumer-resource dynamics provide evidence that decomposition does not proceed at constant rate. Thus, relaxing the assumption of time invariance for litter decay rate is a necessary step towards a deeper mechanistic understanding of drivers and agents of plant litter decomposition in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair, E. C., Hobbie, S. E., & Hobbie, R. K. (2010). Single-pool exponential decomposition models: Potential pitfalls in their use in ecological studies. Ecology, 91, 1225–1236

    Article  Google Scholar 

  • Alemanno, S., Mancinelli, G., & Basset, A. (2007). Effects of invertebrate patch use behaviour and detritus quality on reed leaf decomposition in aquatic systems: A modelling approach. Ecological Modelling, 205, 492–506

    Article  Google Scholar 

  • Alp, M., Cucherousset, J., Buoro, M., & Lecerf, A. (2016). Phenological response of a key ecosystem function to biological invasion. Ecology Letters, 19, 519–527

    Article  Google Scholar 

  • Bärlocher, F. (1992). Effects of drying and freezing autumn leaves on leaching and colonization by aquatic hyphomycetes. Freshwater Biology, 28, 1–7

    Article  Google Scholar 

  • Baudoin, J. M., Guérold, F., Felten, V., Chauvet, E., Wagner, P., & Rousselle, P. (2008). Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf litter breakdown. Microbial Ecology, 56, 260–269

    Article  CAS  Google Scholar 

  • Boling, R. H., Goodman, E. D., Van Sickle, J. A., Zimmer, J. O., Cummings, K. W., Petersen, R. C., & Reice, S. R. (1975). Toward a model of detritus processing in a woodland stream. Ecology, 56, 141–151

    Article  Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14, 289–294

    Article  Google Scholar 

  • Carpenter, S. R. (1981). Decay of heterogeneous detritus: A general model. Journal of Theoretical Biology, 89, 539–547

    Article  Google Scholar 

  • Chauvet, E. (1987). Changes in the chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia, 148, 34–44

    Article  Google Scholar 

  • Cornwell, W. K., & Weedon, J. T. (2014). Decomposition trajectories of diverse litter types: A model selection analysis. Methods in Ecology and Evolution, 5, 173–182

    Article  Google Scholar 

  • Dang, C. K., Schindler, M., Chauvet, E., & Gessner, M. O. (2009). Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology, 90, 122–131

    Article  Google Scholar 

  • Danger, M., Cornut, J., Elger, A., & Chauvet, E. (2012). Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa. Freshwater Biology, 57, 1017–1030

    Article  Google Scholar 

  • Fierer, N., Craine, J. M., McLauchlan, K., & Schimel, J. P. (2005). Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320–326

    Article  Google Scholar 

  • Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W. P., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R., & Zeglin, L. H. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 23, 3064–3075

    Article  Google Scholar 

  • Gessner, M. O., & Schwoerbel, J. (1989). Leaching kinetics of fresh leaf-litter with implications for the current concept of leaf-processing in streams. Archiv Für Hydrobiologie, 15, 81–90

    Google Scholar 

  • Gessner, M. O., Chauvet, E., & Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384

    Article  Google Scholar 

  • Geyer, K. M., Kyker-Snowman, E., Grandy, A. S., & Frey, S. D. (2016). Microbial carbon use efficiency: Accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry, 127, 173–188

    Article  CAS  Google Scholar 

  • Graça, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams—A review. International Review of Hydrobiology, 86, 383–393

    Article  Google Scholar 

  • Hanson, B. J., Cummins, K. W., Barnes, J. R., & Carter, M. W. (1984). Leaf litter processing in aquatic systems: A two variable model. Hydrobiologia, 111, 21–29

    Article  Google Scholar 

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038

    Article  Google Scholar 

  • Laliberté, E., Adair, E. C., & Hobbie, S. E. (2012). Estimating litter decomposition rate in single-pool models using nonlinear beta regression. PLoS ONE, 7, e45140

    Article  Google Scholar 

  • Lecerf, A., Dobson, M., Dang, C. K., & Chauvet, E. (2005). Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia, 146, 432–442

    Article  Google Scholar 

  • Manzoni, S., Katul, G. G., & Porporato, A. (2009). Analysis of soil carbon transit times and age distribution using network theories. Journal of Geophysical Research, 114, G04025

    Article  Google Scholar 

  • Manzoni, S., Pineiro, G., Jackson, R. B., Jobbagy, E. G., Kim, J. H., & Porporato, A. (2012). Analytical models of soil and litter decomposition: Solution for mass loss and time-dependent decay rates. Soil Biology and Biochemistry, 50, 66–76

    Article  CAS  Google Scholar 

  • Maronna, R. A., Martin, D. R., & Yohai, V. J. (2019). Robust statistics: Theory and methods (with R) (2nd ed., 464 pp.). Wiley Series in Probability and Statistics. Wiley.

    Google Scholar 

  • McKie, B. G., Woodward, G., Hladyz, S., Nistorescu, M., Preda, E., Popescu, C., Giller, P. S., & Malmqvist, B. (2008). Ecosystem functioning in stream assemblages from different regions: Contrasting responses to variation in detritivore richness, evenness and density. Journal of Animal Ecology, 77, 495–504

    Article  CAS  Google Scholar 

  • Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322–331

    Article  Google Scholar 

  • Richardson, J. S., Hoover, T., & Lecerf, A. (2009). Coarse organic matter dynamics in small streams: Linking function to structural changes caused by catchment landuses [Special issue paper]. Freshwater Biology, 54, 2116–2126

    Article  CAS  Google Scholar 

  • Rodríguez-Pérez, H., Borrel, G., Leroy, C., Carrias, J. F., Corbara, B., Srivastava, D. S., & Céréghino, R. (2018). Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia, 187, 267–279

    Article  Google Scholar 

  • Rota, T., Jabiol, J., Chauvet, E., & Lecerf, A. (2018). Phenotypic determinants of inter-individual variability of litter consumption rate in a detritivore population. Oikos, 127, 1670–1678

    Article  Google Scholar 

  • Rovira, P., & Rovira, R. (2010). Fitting litter decomposition datasets to mathematical curves: Towards a generalised exponential approach. Geoderma, 150, 329–343

    Article  Google Scholar 

  • Santonja, M., Pellan, L., & Piscart, C. (2017). Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecology and Evolution, 8, 2542–2553

    Article  Google Scholar 

  • Sinsabaugh, R. L., Osgood, M. P., & Findlay, S. (1993). Enzymatic models for estimating decomposition rates of particulate detritus. Journal of the North American Benthological Society, 13, 160–169

    Article  Google Scholar 

  • Swan, C. M., & Palmer, M. A. (2005). Leaf litter diversity leads to non-additivity in stream detritivore colonization dynamics. Oceanological and Hydrobiological Studies, 34, 19–38

    Google Scholar 

  • Webster, J. R. (1983). The role of benthic macroinvertebrates in detritus dynamics of streams: A computer simulation. Ecological Monographs, 53, 383–404

    Article  Google Scholar 

  • Woodward, G., Gessner, M. O., Giller, P., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J., Nistorescu, M., Pozo, J., Risnoveanu, G., … Chauvet, E. (2012). Continental-scale effects of nutrient loading and eutrophication on stream ecosystem functioning. Science, 336, 1438–1440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Lecerf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lecerf, A. (2021). The Construction of Plant Litter Decomposition Curves. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_19

Download citation

Publish with us

Policies and ethics