Skip to main content

The Intersection of Blockchain and 6G Technologies

  • Chapter
  • First Online:
6G Mobile Wireless Networks

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

The fifth generation (5G) wireless networks are on the way to be deployed around the world. The 5G technologies target to support diverse vertical applications by connecting heterogeneous devices and machines with drastic improvements in terms of high quality of service, increased network capacity and enhanced system throughput. However, 5G systems still remain a number of security challenges that have been mentioned by researchers and organizations, including decentralization, transparency, risks of data interoperability, and network privacy vulnerabilities. Furthermore, the conventional techniques may not be sufficient to deal with the security requirements of 5G. As 5G is generally deployed in heterogeneous networks with massive ubiquitous devices, it is quite necessary to provide secure and decentralized solutions. Motivated from these facts, in this paper we provide a state-of-the-art survey on the integration of blockchain with 5G networks and beyond. In this detailed survey, our primary focus is on the extensive discussions on the potential of blockchain for enabling key 5G technologies, including cloud computing, edge computing, Network Function Virtualization, Network Slicing, and D2D communications. We then explore and analyse the opportunities that blockchain potentially empowers important 5G services, ranging from spectrum management, data sharing, network virtualization, resource management to interference management, federated learning, privacy and security provision. The recent advances in the applications of blockchain in 5G Internet of Things are also surveyed in a wide range of popular use-case domains, such as smart healthcare, smart city, smart transportation, smart grid and UAVs. The main findings derived from the comprehensive survey on the cooperated blockchain-5G networks and services are then summarized, and possible research challenges with open issues are also identified. Lastly, we complete this survey by shedding new light on future directions of research on this newly emerging area.

These authors “Tri Nguyen and Lauri Lovén” contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://unenumerated.blogspot.com/2005/12/bit-gold.html.

  2. 2.

    https://www.coindesk.com/understanding-dao-hack-journalists.

  3. 3.

    https://nvd.nist.gov/vuln/detail/CVE-2018-10299.

  4. 4.

    https://eips.ethereum.org/EIPS/eip-20.

References

  1. S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. Manubot (2008)

    Google Scholar 

  2. G. Perboli, S. Musso, M. Rosano, Blockchain in logistics and supply chain: a lean approach for designing real-world use cases. IEEE Access 6, 62018–62028 (2018)

    Article  Google Scholar 

  3. E. Tijan, S. Aksentijević, K. Ivanić, M. Jardas, Blockchain technology implementation in logistics. Sustainability 11(4), 1185 (2019)

    Google Scholar 

  4. M. Barbieri, D. Gassen, Blockchain-can this new technology really revolutionize the land registry system?, in Responsible Land Governance: Towards an Evidence Based Approach: Proceedings of the Annual World Bank Conference on Land and Poverty (2017), pp. 1–13

    Google Scholar 

  5. V. Thakur, M. Doja, Y.K. Dwivedi, T. Ahmad, G. Khadanga, Land records on blockchain for implementation of land titling in India. Int. J. Inf. Manag. 52, 101940 (2020)

    Article  Google Scholar 

  6. D. Daniel, C. Ifejika Speranza, The role of blockchain in documenting land users’ rights: the canonical case of farmers in the vernacular land market. Front. Blockch. 3, 19 (2020)

    Article  Google Scholar 

  7. S. Jeong, N.N. Dao, Y. Lee, C. Lee, S. Cho, Blockchain based billing system for electric vehicle and charging station, in 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)(IEEE, Piscataway, 2018), pp. 308–310

    Google Scholar 

  8. H. Zhang, E. Deng, H. Zhu, Z. Cao, Smart contract for secure billing in ride-hailing service via blockchain. Peer-to-Peer Netw. Appl. 12(5), 1346–1357 (2019)

    Article  Google Scholar 

  9. B. Aazhang, P. Ahokangas, L. Lovén, et al., Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence (White Paper), 1st edn. 6G Flagship, (University of Oulu, Oulu, 2019)

    Google Scholar 

  10. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G.K. Karagiannidis, P. Fan, 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Vehic. Technol. Mag. 14(3), 28–41 (2019)

    Article  Google Scholar 

  11. P. Yang, Y. Xiao, M. Xiao, S. Li, 6G wireless communications: vision and potential techniques. IEEE Netw. 33(4), 70–75 (2019)

    Article  MathSciNet  Google Scholar 

  12. E.C. Strinati, S. Barbarossa, J.L. Gonzalez-Jimenez, D. Kténas, N. Cassiau, C. Dehos, 6G: The next frontier (2019). Preprint arXiv:1901.03239

    Google Scholar 

  13. W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems (2019). Preprint arXiv:1902.10265

    Google Scholar 

  14. N. DOCOMO, White paper 5G evolution and 6G. Accessed, vol. 1 (2020)

    Google Scholar 

  15. L. Lovén, T. Leppänen, E. Peltonen, J. Partala, E. Harjula, P. Porambage, M. Ylianttila, J. Riekki, Edgeai: A vision for distributed, edge-native artificial intelligence in future 6G networks, in The 1st 6G Wireless Summit Levi, Finland (2019), pp. 1–2

    Google Scholar 

  16. E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-Castiñeira, M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks, et al., 6G white paper on edge intelligence (2020). Preprint arXiv:2004.14850

    Google Scholar 

  17. Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, Y. Zhang, Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 33(3), 10–17 (2019)

    Article  Google Scholar 

  18. I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, A. Gurtov, Overview of 5G security challenges and solutions. IEEE Commun. Stand. Mag. 2(1), 36–43 (2018)

    Article  Google Scholar 

  19. T. Nguyen, N. Tran, L. Loven, J. Partala, M.T. Kechadi, S. Pirttikangas, Privacy-aware blockchain innovation for 6G: Challenges and opportunities, in 2020 2nd 6G Wireless Summit (6G SUMMIT) (IEEE, Piscataway, 2020), pp. 1–5

    Book  Google Scholar 

  20. F. Burkhardt, C. Patachia, L. Lovén, et al., 6G White Paper on Validation and Trials for Verticals Towards 2030’s. 6G Flagship (University of Oulu, Oulu, 2020)

    Google Scholar 

  21. Y. Lu, X. Zheng, 6G: a survey on technologies, scenarios, challenges, and the related issues. J. Ind. Inf. Integr. 19, 100158 (2020)

    Google Scholar 

  22. R. Davenport, Distributed database technology—a survey. Comput. Netw. (1976) 2(3), 155–167 (1978)

    Google Scholar 

  23. S. Haber, W.S. Stornetta, How to time-stamp a digital document, in Conference on the Theory and Application of Cryptography (Springer, Berlin, 1990), pp. 437–455

    MATH  Google Scholar 

  24. D. Bayer, S. Haber, W.S. Stornetta, Improving the efficiency and reliability of digital time-stamping, in Sequences II (Springer, Berlin, 1993), pp. 329–334

    MATH  Google Scholar 

  25. R.C. Merkle, A digital signature based on a conventional encryption function, in Conference on the Theory and Application of Cryptographic Techniques (Springer, Berlin, 1987), pp. 369–378

    Google Scholar 

  26. D. Mazieres, D. Shasha, Building secure file systems out of byzantine storage, in Proceedings of the Twenty-First annual Symposium on Principles of Distributed Computing (2002), pp. 108–117

    Google Scholar 

  27. J. Li, M.N. Krohn, D. Mazieres, D.E. Shasha, Secure untrusted data repository (SUNDR), in OSDI, vol. 4 (2004), pp. 9–9

    Google Scholar 

  28. W. Dai, B-money. Consulted 1, 2012 (1998)

    Google Scholar 

  29. H. Finney, Rpow-reusable proofs of work. Internet https://cryptome.org/rpow.htm (2004)

  30. C.C. Cocks, A note on non-secret encryption. CESG Memo (1973)

    Google Scholar 

  31. K. Brown, Announcing approval of federal information processing standard (fips) 197, advanced encryption standard (aes). National Institute of Standards and Technology, Commerce (2002)

    Google Scholar 

  32. N. Szabo, The idea of smart contracts. Nick Szabo’s Papers Concise Tutorials, vol. 6 (1997)

    Google Scholar 

  33. G. Wood, et al., Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  34. M. Belotti, N. Božić, G. Pujolle, S. Secci, A vademecum on blockchain technologies: when, which, and how. IEEE Commun. Surveys Tutor. 21(4), 3796–3838 (2019)

    Article  Google Scholar 

  35. R.G. Brown, J. Carlyle, I. Grigg, M. Hearn, Corda: an introduction. R3 CEV 1, 15 (2016)

    Google Scholar 

  36. E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., Hyperledger fabric: A distributed operating system for permissioned blockchains, in Proceedings of the Thirteenth EuroSys Conference (2018), pp. 1–15

    Google Scholar 

  37. Y. Xiao, N. Zhang, W. Lou, Y.T. Hou, A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surveys Tutor. 22(2), 1432–1465 (2020)

    Article  Google Scholar 

  38. L. Lamport, R. Shostak, M. Pease, The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  39. C. Dwork, M. Naor, Pricing via processing or combatting junk mail, in Annual International Cryptology Conference (Springer, Berlin, 1992), pp. 139–147

    MATH  Google Scholar 

  40. M. Jakobsson, A. Juels, Proofs of work and bread pudding protocols, in Secure Information Networks (Springer, Berlin, 1999), pp. 258–272

    Google Scholar 

  41. M. Castro, B. Liskov, et al., Practical byzantine fault tolerance, in e Proceedings of the Third Symposium on Operating Systems Design and Implementation, vol. 99 (1999), pp. 173–186

    Google Scholar 

  42. F. Muratov, A. Lebedev, N. Iushkevich, B. Nasrulin, M. Takemiya, YAC: BFT consensus algorithm for blockchain (2018). Preprint arXiv:1809.00554

    Google Scholar 

  43. I.C. Lin, T.C. Liao, A survey of blockchain security issues and challenges. IJ Netw. Security 19(5), 653–659 (2017)

    Google Scholar 

  44. Z. Zheng, S. Xie, H.N. Dai, H. Wang, Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services 14(4), 352–375 (Inderscience Publishers (IEL), 2018)

    Google Scholar 

  45. W. Wang, D.T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, D.I. Kim, A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 7, 22328–22370 (2019)

    Article  Google Scholar 

  46. M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D.H. Nyang, D. Mohaisen, Exploring the attack surface of blockchain: a comprehensive survey. IEEE Commun. Surveys Tutor. 22, 1977–2008 (2020)

    Article  Google Scholar 

  47. M.A. Javarone, C.S. Wright, From bitcoin to bitcoin cash: A network analysis, in Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems (2018), pp. 77–81

    Google Scholar 

  48. J.R. Douceur, The sybil attack, in International Workshop on Peer-to-Peer Systems (Springer, Berlin, 2002), pp. 251–260

    Book  MATH  Google Scholar 

  49. I. Eyal, E.G. Sirer, Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  MATH  Google Scholar 

  50. X. Li, P. Jiang, T. Chen, X. Luo, Q. Wen, A survey on the security of blockchain systems. Future Gener. Comput. Syst. 107, 841–853 (2017)

    Article  Google Scholar 

  51. N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts (SOK), in International Conference on Principles of Security and Trust (Springer, Berlin, 2017), pp. 164–186

    Google Scholar 

  52. H. Chen, M. Pendleton, L. Njilla, S. Xu, A survey on ethereum systems security: vulnerabilities, attacks, and defenses. ACM Comput. Surveys 53(3), 1–43 (2020)

    Article  Google Scholar 

  53. S. Popov, O. Saa, P. Finardi, Equilibria in the Tangle. Computers & Industrial Engineering 136, 160–172 (Elsevier, 2019)

    Google Scholar 

  54. K. Christidis, M. Devetsikiotis, Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  55. J. Xie, H. Tang, T. Huang, F.R. Yu, R. Xie, J. Liu, Y. Liu, A survey of blockchain technology applied to smart cities: research issues and challenges. IEEE Commun. Surveys Tutor. 21(3), 2794–2830 (2019)

    Article  Google Scholar 

  56. F. Tian, An agri-food supply chain traceability system for china based on RFID & blockchain technology, in 2016 13th International Conference on Service Systems and Service Management (ICSSSM) (IEEE, Piscataway, 2016), pp. 1–6

    Google Scholar 

  57. D. Dujak, D. Sajter, Blockchain applications in supply chain, in SMART Supply Network (Springer, Berlin, 2019), pp. 21–46

    Google Scholar 

  58. M. Hölbl, M. Kompara, A. Kamišalić, L. Nemec Zlatolas, A systematic review of the use of blockchain in healthcare. Symmetry 10(10), 470 (2018)

    Google Scholar 

  59. T.T. Kuo, H.E. Kim, L. Ohno-Machado, Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inf. Assoc. 24(6), 1211–1220 (2017)

    Article  Google Scholar 

  60. P. Zhang, D.C. Schmidt, J. White, G. Lenz, Blockchain technology use cases in healthcare, in Advances in Computers, vol. 111 (Elsevier, Amsterdam, 2018), pp. 1–41

    Google Scholar 

  61. A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C.P.A. Ogah, Z. Sun, Blockchain-based dynamic key management for heterogeneous intelligent transportation systems. IEEE Int. Things J. 4(6), 1832–1843 (2017)

    Article  Google Scholar 

  62. L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, Z. Zhang, Creditcoin: a privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Trans. Intell. Transport. Syst. 19(7), 2204–2220 (2018)

    Article  Google Scholar 

  63. T.H. Nguyen, J. Partala, S. Pirttikangas, Blockchain-based mobility-as-a-service, in 2019 28th International Conference on Computer Communication and Networks (ICCCN) (IEEE, Piscataway, 2019), pp. 1–6

    Google Scholar 

  64. K. Zhao, S. Tang, B. Zhao, Y. Wu, Dynamic and privacy-preserving reputation management for blockchain-based mobile crowdsensing. IEEE Access 7, 74694–74710 (2019)

    Article  Google Scholar 

  65. Y. Lee, K.M. Lee, S.H. Lee, Blockchain-based reputation management for custom manufacturing service in the peer-to-peer networking environment. Peer-to-Peer Netw. Appl. 13(2), 671–683 (2020)

    Article  Google Scholar 

  66. A. Schaub, R. Bazin, O. Hasan, L. Brunie, A trustless privacy-preserving reputation system, in IFIP International Conference on ICT Systems Security and Privacy Protection (Springer, Berlin, 2016), pp. 398–411

    Book  Google Scholar 

  67. M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.N. Liu, Y. Xiang, R.H. Deng, Crowdbc: A blockchain-based decentralized framework for crowdsourcing. IEEE Trans. Parallel Distrib. Syst. 30(6), 1251–1266 (2018)

    Article  Google Scholar 

  68. Z. Yang, K. Yang, L. Lei, K. Zheng, V.C. Leung, Blockchain-based decentralized trust management in vehicular networks. IEEE Int. Things J. 6(2), 1495–1505 (2018)

    Article  Google Scholar 

  69. M. Dorigo, et al., Blockchain technology for robot swarms: A shared knowledge and reputation management system for collective estimation, in Swarm Intelligence: 11th International Conference, ANTS 2018, Rome, Italy, October 29–31, 2018. Proceedings, vol. 11172 (Springer, Berlin, 2018), p. 425

    Google Scholar 

  70. M. Sharples, J. Domingue, The blockchain and kudos: A distributed system for educational record, reputation and reward, in European Conference on Technology Enhanced Learning (Springer, Berlin, 2016), pp. 490–496

    Google Scholar 

  71. E. Bellini, Y. Iraqi, E. Damiani, Blockchain-based distributed trust and reputation management systems: a survey. IEEE Access 8, 21127–21151 (2020)

    Article  Google Scholar 

  72. J. Yu, M. Ryan, Evaluating web pkis, in Software Architecture for Big Data and the Cloud (Elsevier, Amsterdam, 2017), pp. 105–126

    Book  Google Scholar 

  73. E. Karaarslan, E. Adiguzel, Blockchain based DNS and PKI solutions. IEEE Commun. Stand. Mag. 2(3), 52–57 (2018)

    Article  Google Scholar 

  74. C. Fromknecht, D. Velicanu, S. Yakoubov, A decentralized public key infrastructure with identity retention. IACR Cryptol. ePrint Arch. 2014, 803 (2014)

    Google Scholar 

  75. A. Hari, T. Lakshman, The internet blockchain: A distributed, tamper-resistant transaction framework for the internet, in Proceedings of the 15th ACM Workshop on Hot Topics in Networks (2016), pp. 204–210

    Google Scholar 

  76. L. Axon, M. Goldsmith, PB-PKI: A privacy-aware blockchain-based PKI. Proceedings of the 14th International Joint Conference on e-Business and Telecommunications - SECRYPT, (ICETE 2017) (SciTePress, 2017). pp. 311–318. https://doi.org/10.5220/0006419203110318

  77. N. Alexopoulos, J. Daubert, M. Mühlhäuser, S.M. Habib, Beyond the hype: On using blockchains in trust management for authentication, in 2017 IEEE Trustcom/BigDataSE/ICESS (IEEE, Piscataway, 2017), pp. 546–553

    Google Scholar 

  78. R. Longo, F. Pintore, G. Rinaldo, M. Sala, On the security of the blockchain bix protocol and certificates, in 2017 9th International Conference on Cyber Conflict (CyCon) (IEEE, Piscataway, 2017), pp. 1–16

    Book  Google Scholar 

  79. H. Orman, Blockchain: The emperors new PKI? IEEE Int. Comput. 22(2), 23–28 (2018)

    Article  Google Scholar 

  80. M. Saad, A. Anwar, A. Ahmad, H. Alasmary, M. Yuksel, A. Mohaisen, Routechain: Towards blockchain-based secure and efficient BGP routing, in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (IEEE, Piscataway, 2019), pp. 210–218

    Google Scholar 

  81. M. Vyshegorodtsev, D. Miyamoto, Y. Wakahara, Reputation scoring system using an economic trust model: A distributed approach to evaluate trusted third parties on the internet, in 2013 27th International Conference on Advanced Information Networking and Applications Workshops (IEEE, Piscataway, 2013), pp. 730–737

    Google Scholar 

  82. D. Reilly, C. Wren, T. Berry, Cloud computing: Forensic challenges for law enforcement, in 2010 International Conference for Internet Technology and Secured Transactions (IEEE, Piscataway, 2010), pp. 1–7

    Google Scholar 

  83. S. Zawoad, A. Dutta, R. Hasan, Towards building forensics enabled cloud through secure logging-as-a-service. IEEE Trans. Depend. Secure Comput. 13(1), 1–1 (2016)

    Google Scholar 

  84. M. Bellare, B. Yee, Forward-security in private-key cryptography, in Cryptographers’ Track at the RSA Conference (Springer, 2003), pp. 1–18

    Google Scholar 

  85. J. Cucurull, J. Puiggalí, Distributed immutabilization of secure logs, in International Workshop on Security and Trust Management (Springer, Berlin, 2016), pp. 122–137

    Google Scholar 

  86. W. Pourmajidi, A. Miranskyy, Logchain: blockchain-assisted log storage, in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD) (IEEE, Piscataway, 2018), pp. 978–982

    Book  Google Scholar 

  87. A. Sutton, R. Samavi, Blockchain enabled privacy audit logs, in International Semantic Web Conference (Springer, Berlin, 2017), pp. 645–660

    Google Scholar 

  88. C.Noyes, Bitav: Fast anti-malware by distributed blockchain consensus and feedforward scanning (2016). Preprint arXiv:1601.01405

    Google Scholar 

  89. J. Gu, B. Sun, X. Du, J. Wang, Y. Zhuang, Z. Wang, Consortium blockchain-based malware detection in mobile devices. IEEE Access 6, 12118–12128 (2018)

    Article  Google Scholar 

  90. R. Fuji, S. Usuzaki, K. Aburada, H. Yamaba, T. Katayama, M. Park, N. Shiratori, N. Okazaki, Investigation on sharing signatures of suspected malware files using blockchain technology, in International Multi Conference of Engineers and Computer Scientists (IMECS) (2019), pp. 94–99

    Google Scholar 

  91. M. Ylianttila, R. Kantola, A. Gurtov, L. Mucchi, I. Oppermann, Z. Yan, T.H. Nguyen, F. Liu, T. Hewa, M. Liyanage, et al., 6G white paper: Research challenges for trust, security and privacy (2020). Preprint arXiv:2004.11665

    Google Scholar 

  92. G.A.F. Rebello, I.D. Alvarenga, I.J. Sanz, O.C.M. Duarte, Bsec-nfvo: A blockchain-based security for network function virtualization orchestration, in ICC 2019–2019 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2019), pp. 1–6

    Google Scholar 

  93. I.D. Alvarenga, G.A. Rebello, O.C.M. Duarte, Securing configuration management and migration of virtual network functions using blockchain, in NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium (IEEE, Piscataway, 2018), pp. 1–9

    Google Scholar 

  94. P. Mell, T. Grance, The NIST definition of cloud computing: Recommendations of the National Institute of Standards and Technology (Computer Security Resource Center, 2012)

    Google Scholar 

  95. J. Wu, Z. Zhang, Y. Hong, Y. Wen, Cloud radio access network (C-RAN): a primer. IEEE Netw. 29(1), 35–41 (2015)

    Article  Google Scholar 

  96. Y. Zhang, D. He, K.K.R. Choo, Bads: Blockchain-based architecture for data sharing with ABS and CP-ABE in IoT. Wirel. Commun. Mobile Comput. 2018, 2783658 (2018), p. 9. https://doi.org/10.1155/2018/2783658

    Google Scholar 

  97. S. Ali, G. Wang, M.Z.A. Bhuiyan, H. Jiang, Secure data provenance in cloud-centric internet of things via blockchain smart contracts, in 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (IEEE, Piscataway, 2018), pp. 991–998

    Google Scholar 

  98. H. Yang, H. Zheng, J. Zhang, Y. Wu, Y. Lee, Y. Ji, Blockchain-based trusted authentication in cloud radio over fiber network for 5G. in 2017 16th International Conference on Optical Communications and Networks (ICOCN) (IEEE, Piscataway, 2017), pp. 1–3

    Google Scholar 

  99. H. Yang, Y. Wu, J. Zhang, H. Zheng, Y. Ji, Y. Lee, Blockonet: Blockchain-based trusted cloud radio over optical fiber network for 5G fronthaul. in Optical Fiber Communication Conference (Optical Society of America, Washington, 2018), pp. W2A–25

    Google Scholar 

  100. H. Yang, J. Yuan, H. Yao, Q. Yao, A. Yu, J. Zhang, Blockchain-based hierarchical trust networking for jointcloud. IEEE Int. Things J. 7(3), 1667–1677 (2019)

    Article  Google Scholar 

  101. M. Ma, G. Shi, F. Li, Privacy-oriented blockchain-based distributed key management architecture for hierarchical access control in the IoT scenario. IEEE Access 7, 34045–34059 (2019)

    Article  Google Scholar 

  102. O.O. Malomo, D.B. Rawat, M. Garuba, Next-generation cybersecurity through a blockchain-enabled federated cloud framework. J. Supercomput. 74(10), 5099–5126 (2018)

    Article  Google Scholar 

  103. J. Haavisto, M. Arif, L. Lovén, T. Leppänen, J. Riekki, Open-source RANs in practice: an over-the-air deployment for 5G MEC (2019). Preprint arXiv:1905.03883

    Google Scholar 

  104. R. Yang, F.R. Yu, P. Si, Z. Yang, Y. Zhang, Integrated blockchain and edge computing systems: a survey, some research issues and challenges. IEEE Commun. Surveys Tutor. 21(2), 1508–1532 (2019)

    Article  Google Scholar 

  105. S. Guo, X. Hu, S. Guo, X. Qiu, F. Qi, Blockchain meets edge computing: a distributed and trusted authentication system. IEEE Trans. Ind. Inf. 16(3), 1972–1983 (2019)

    Article  Google Scholar 

  106. J. Wang, L. Wu, K.K.R. Choo, D. He, Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure. IEEE Trans. Ind. Inf. 16(3), 1984–1992 (2019)

    Article  Google Scholar 

  107. Y. Liu, F.R. Yu, X. Li, H. Ji, V.C. Leung, Resource allocation for video transcoding and delivery based on mobile edge computing and blockchain, in 2018 IEEE Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2018), pp. 1–6

    Google Scholar 

  108. C. Xia, H. Chen, X. Liu, J. Wu, L. Chen, Etra: Efficient three-stage resource allocation auction for mobile blockchain in edge computing, in 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS) (IEEE, Piscataway, 2018), pp. 701–705

    Google Scholar 

  109. Y. Liu, F.R. Yu, X. Li, H. Ji, V.C. Leung, Decentralized resource allocation for video transcoding and delivery in blockchain-based system with mobile edge computing. IEEE Trans. Vehic. Technol. 68(11), 11169–11185 (2019)

    Article  Google Scholar 

  110. H. Yang, Y. Liang, J. Yuan, Q. Yao, A. Yu, J. Zhang, Distributed blockchain-based trusted multi-domain collaboration for mobile edge computing in 5G and beyond. IEEE Trans. Ind. Inf. 16, 7094–7104 (2020)

    Article  Google Scholar 

  111. M.A. Rahman, M.M. Rashid, M.S. Hossain, E. Hassanain, M.F. Alhamid, M. Guizani, Blockchain and iot-based cognitive edge framework for sharing economy services in a smart city. IEEE Access 7, 18611–18621 (2019)

    Article  Google Scholar 

  112. Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

    Article  Google Scholar 

  113. D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, E. Ilie-Zudor, Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)

    Google Scholar 

  114. H. Kim, J. Park, M. Bennis, S.L. Kim, Blockchained on-device federated learning. IEEE Commun. Lett. 24, 1279–1283 (2019)

    Article  Google Scholar 

  115. J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, W. Luo, Deepchain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Depend. Secure Comput. (2019). p. 1. https://doi.org/10.1109/TDSC.2019.2952332

  116. Y. Lu, X. Huang, Y. Dai, S. Maharjan, Y. Zhang, Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inf. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  117. J. Kang, Z. Xiong, D. Niyato, S. Xie, J. Zhang, Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Int. Things J. 6(6), 10700–10714 (2019)

    Article  Google Scholar 

  118. Z. Shae, J. Tsai, Transform blockchain into distributed parallel computing architecture for precision medicine, in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS) (IEEE, Piscataway, 2018), pp. 1290–1299

    Google Scholar 

  119. R. Doku, D.B. Rawat, C. Liu, Towards federated learning approach to determine data relevance in big data, in 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI) (IEEE, Piscataway, 2019), pp. 184–192

    Google Scholar 

  120. D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Blockchain for 5G and beyond networks: a state of the art survey. J. Netw. Comput. Appl. 166, 102693 (2020). https://doi.org/10.1016/j.jnca.2020.102693

    Article  Google Scholar 

  121. S.K. Sharma, T.E. Bogale, L.B. Le, S. Chatzinotas, X. Wang, B. Ottersten, Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Commun. Surveys Tutor. 20(1), 674–707 (2017)

    Article  Google Scholar 

  122. Y.C. Liang, Blockchain for dynamic spectrum management, in Dynamic Spectrum Management (Springer, Berlin, 2020), pp. 121–146

    Google Scholar 

  123. M.B. Weiss, K. Werbach, D.C. Sicker, C.E.C. Bastidas, On the application of blockchains to spectrum management. IEEE Trans. Cognitive Commun. Netw. 5(2), 193–205 (2019)

    Article  Google Scholar 

  124. K. Kotobi, S.G. Bilén, Blockchain-enabled spectrum access in cognitive radio networks, in 2017 Wireless Telecommunications Symposium (WTS) (IEEE, Piscataway, 2017), pp. 1–6

    Book  Google Scholar 

  125. K. Kotobi, S.G. Bilen, Secure blockchains for dynamic spectrum access: a decentralized database in moving cognitive radio networks enhances security and user access. IEEE Vehic. Technol. Mag. 13(1), 32–39 (2018)

    Article  Google Scholar 

  126. Y. Pei, S. Hu, F. Zhong, D. Niyato, Y.C. Liang, Blockchain-enabled dynamic spectrum access: Cooperative spectrum sensing, access and mining, in 2019 IEEE Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2019), pp. 1–6

    Google Scholar 

  127. S. Bayhan, A. Zubow, A. Wolisz, Spass: Spectrum sensing as a service via smart contracts, in 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) (IEEE, Piscataway, 2018), pp. 1–10

    Google Scholar 

  128. S. Bayhan, A. Zubow, P. Gawłowicz, A. Wolisz, Smart contracts for spectrum sensing as a service. IEEE Trans. Cognit. Commun. Netw. 5(3), 648–660 (2019)

    Article  Google Scholar 

  129. S. Raju, S. Boddepalli, S. Gampa, Q. Yan, J.S. Deogun, Identity management using blockchain for cognitive cellular networks, in 2017 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2017), pp. 1–6

    Google Scholar 

  130. K. Fan, Y. Ren, Y. Wang, H. Li, Y. Yang, Blockchain-based efficient privacy preserving and data sharing scheme of content-centric network in 5G. IET Commun. 12(5), 527–532 (2017)

    Article  Google Scholar 

  131. X. Zhang, X. Chen, Data security sharing and storage based on a consortium blockchain in a vehicular ad-hoc network. IEEE Access 7, 58241–58254 (2019)

    Article  Google Scholar 

  132. S. Wang, Y. Zhang, Y. Zhang, A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. IEEE Access 6, 38437–38450 (2018)

    Article  Google Scholar 

  133. K. Bhaskaran, P. Ilfrich, D. Liffman, C. Vecchiola, P. Jayachandran, A. Kumar, F. Lim, K. Nandakumar, Z. Qin, V. Ramakrishna, et al., Double-blind consent-driven data sharing on blockchain, in 2018 IEEE International Conference on Cloud Engineering (IC2E) (IEEE, Piscataway, 2018), pp. 385–391

    Book  Google Scholar 

  134. Y. Le, X. Ling, J. Wang, Z. Ding, Prototype design and test of blockchain radio access network, in 2019 IEEE International Conference on Communications Workshops (ICC Workshops) (IEEE, Piscataway, 2019), pp. 1–6

    Google Scholar 

  135. X. Ling, J. Wang, T. Bouchoucha, B.C. Levy, Z. Ding, Blockchain radio access network (B-RAN): towards decentralized secure radio access paradigm. IEEE Access 7, 9714–9723 (2019)

    Article  Google Scholar 

  136. A. El Gamal,H. El Gamal, A single coin monetary mechanism for distributed cooperative interference management. IEEE Wirel. Commun. Lett. 8(3), 757–760 (2019)

    Article  Google Scholar 

  137. D. Lin, Y. Tang, Blockchain consensus based user access strategies in D2D networks for data-intensive applications. IEEE Access 6, 72683–72690 (2018)

    Article  Google Scholar 

  138. F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, M.A. Javed, A survey of device-to-device communications: research issues and challenges. IEEE Commun. Surveys Tutor. 20(3), 2133–2168 (2018)

    Article  Google Scholar 

  139. L. Jiang, S. Xie, S. Maharjan, Y. Zhang, Joint transaction relaying and block verification optimization for blockchain empowered D2D communication. IEEE Trans. Vehic. Technol. 69(1), 828–841 (2019)

    Article  Google Scholar 

  140. R. Zhang, F.R. Yu, J. Liu, T. Huang, Y. Liu, Deep reinforcement learning (DRL)-based device-to-device (D2D) caching with blockchain and mobile edge computing. IEEE Trans. Wirel. Commun. 19, 6469–6485 (2020)

    Article  Google Scholar 

  141. M. Höyhtyä, K. Lähetkangas, et al., Critical communications over mobile operators’ networks: 5G use cases enabled by licensed spectrum sharing, network slicing and QoS control. IEEE Access 6, 73572–73582 (2018). https://doi.org/10.1109/ACCESS.2018.2883787

    Article  Google Scholar 

  142. I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, H. Flinck, Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surveys Tutor. 20(3), 2429–2453 (2018)

    Article  Google Scholar 

  143. L. Zanzi, A. Albanese, V. Sciancalepore, X. Costa-PĂ©rez, Nsbchain: A secure blockchain framework for network slicing brokerage (2020). Preprint arXiv:2003.07748

    Google Scholar 

  144. A. Adhikari, D.B. Rawat, M. Song, Wireless network virtualization by leveraging blockchain technology and machine learning, in Proceedings of the ACM Workshop on Wireless Security and Machine Learning (2019), pp. 61–66

    Google Scholar 

  145. D.B. Rawat, A. Alshaikhi, Leveraging distributed blockchain-based scheme for wireless network virtualization with security and qos constraints, in 2018 International Conference on Computing, Networking and Communications (ICNC) (IEEE, Piscataway, 2018), pp. 332–336

    Google Scholar 

  146. B. Nour, A. Ksentini, N. Herbaut, P.A. Frangoudis, H. Moungla, A blockchain-based network slice broker for 5G services. IEEE Netw. Lett. 1(3), 99–102 (2019)

    Article  Google Scholar 

  147. G.F. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and Design. (Pearson education, London, 2005)

    Google Scholar 

  148. M. Raynal, Fault-Tolerant Message-Passing Distributed Systems: An Algorithmic Approach (Springer, Berlin, 2018)

    Book  MATH  Google Scholar 

  149. L. Wan, D. Eyers, H. Zhang, Evaluating the impact of network latency on the safety of blockchain transactions, in 2019 IEEE International Conference on Blockchain (Blockchain) (IEEE, Piscataway, 2019), pp. 194–201

    Book  Google Scholar 

  150. M. Conti, E.S. Kumar, C. Lal, S. Ruj, A survey on security and privacy issues of bitcoin. IEEE Commun. Surveys Tutor. 20(4), 3416–3452 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by TrustedMaaS and B-TEA projects by the Infotech institute of the University of Oulu, and the Academy of Finland 6Genesis Flagship (grant 318927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tri Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T., Lovén, L., Partala, J., Pirttikangas, S. (2021). The Intersection of Blockchain and 6G Technologies. In: Wu, Y., et al. 6G Mobile Wireless Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-72777-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72777-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72776-5

  • Online ISBN: 978-3-030-72777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics