Skip to main content

Cloud Fog Architectures in 6G Networks

  • Chapter
  • First Online:
6G Mobile Wireless Networks

Abstract

Prior to the advent of the cloud, storage and processing services were accommodated by specialized hardware, however, this approach introduced a number of challenges in terms of scalability, energy efficiency, and cost. Then came the concept of cloud computing, where to some extent, the issue of massive storage and computation was dealt with by centralized data centers that are accessed via the core network. The cloud has remained with us thus far, however, this has introduced further challenges among which, latency and energy efficiency are of the pinnacle. With the increase in embedded devices’ intelligence came the concept of the Fog. At the edge of the network, large numbers of storage and computational devices exist, where some are owned and deployed by the end-users themselves but most by service operators, such devices are called fog nodes. This means that cloud services are pushed further out from the core towards the edge of the network, hence reduced latency is achieved. Fog nodes are massively distributed in the network, some benefit from wired connections, and others are connected via wireless links. The question of where to allocate services remains an important task and requires extensive attention. This chapter introduces and evaluates cloud fog architectures in 6G networks paying special attention to latency, energy efficiency, scalability, and the trade-offs between distributed and centralized processing resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 28 April 2022

    Author Osama Zwaid Alsulami name is updated to Osama Zwaid Aletri throughout the book.

References

  1. L. Baresi, D.F. Mendonca, in Towards a Serverless Platform for Edge Computing. Proceedings – 2019 IEEE International Conference on Fog Computing, ICFC 2019, June 2019, pp. 1–10. https://doi.org/10.1109/ICFC.2019.00008

  2. Q.-V. Pham et al., A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 1–1 (2020). https://doi.org/10.1109/ACCESS.2020.3001277

  3. M. Satyanarayanan, The emergence of edge computing. Computer (Long. Beach. Calif.). 50(1), 30–39 (2017). https://doi.org/10.1109/MC.2017.9

    Article  Google Scholar 

  4. G. Premsankar, M. Di Francesco, T. Taleb, Edge computing for the internet of things: A case study. IEEE Internet Things J. 5(2), 1275–1284 (2018). https://doi.org/10.1109/JIOT.2018.2805263

    Article  Google Scholar 

  5. Fog | Definition of Fog by Merriam-Webster. https://www.merriam-webster.com/dictionary/fog. Accessed 24 July 2020

  6. N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A survey. IEEE Internet Things J. 5(1), 450–465 (2018). https://doi.org/10.1109/JIOT.2017.2750180

    Article  Google Scholar 

  7. Introduction and Overview at W3C Open Day OpenFog Consortium (2017)

    Google Scholar 

  8. Q. Qi, X. Chen, C. Zhong, Z. Zhang, Integration of energy, computation and communication in 6G cellular internet of things. IEEE Commun. Lett. 24(6), 1333–1337 (Jun. 2020). https://doi.org/10.1109/LCOMM.2020.2982151

    Article  Google Scholar 

  9. M. Silverio-Fernández, S. Renukappa, S. Suresh, What is a smart device? – A conceptualisation within the paradigm of the internet of things. Vis. Eng. 6, 3 (2018). https://doi.org/10.1186/s40327-018-0063-8

    Article  Google Scholar 

  10. L. Zhang, Y.C. Liang, D. Niyato, 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 16(8), 1–14 (2019). https://doi.org/10.23919/JCC.2019.08.001

    Article  Google Scholar 

  11. H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, K. Wu, Artificial intelligence-enabled intelligent 6G networks. arXiv Prepr. arXiv1912.05744, vol. 639798 (2019)

    Google Scholar 

  12. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence | 1 (2019)

    Google Scholar 

  13. J.M.H. Elmirghani et al., GreenTouch GreenMeter core network energy efficiency improvement measures and optimization [Invited]. IEEE/OSA J. Opt. Commun. Netw. 10(2), A250–A269 (2018). https://doi.org/10.1364/JOCN.10.00A250

    Article  Google Scholar 

  14. 6G Channel – White Paper on 6G Networking. https://www.6gchannel.com/portfolio-posts/6g-white-paper-networking/. Accessed 25 July 2020

  15. B.A. Yosuf, M. Musa, T. Elgorashi, J.M.H. Elmirghani, Impact of distributed processing on power consumption for IoT based surveillance applications. Int. Conf. Transp. Opt. Netw. 2019, 1–5 (2019). https://doi.org/10.1109/ICTON.2019.8840023

    Article  Google Scholar 

  16. B.A. Yosuf, M. Musa, T. Elgorashi, J. Elmirghani, Energy efficient distributed processing for IoT. arXiv Prepr. arXiv2001.02974 (2020)

    Google Scholar 

  17. H.M.M. Ali, T.E.H. El-Gorashi, A.Q. Lawey, J.M.H. Elmirghani, Future energy efficient data centers with disaggregated servers. J. Light. Technol. 35(24), 5361–5380 (Dec. 2017). https://doi.org/10.1109/JLT.2017.2767574

    Article  Google Scholar 

  18. X. Dong, T. El-Gorashi, J.M.H. Elmirghani, Green IP over WDM networks with data centers. J. Light. Technol. 29(12), 1861–1880 (2011). https://doi.org/10.1109/JLT.2011.2148093

    Article  Google Scholar 

  19. N.I. Osman, T. El-Gorashi, L. Krug, J.M.H. Elmirghani, Energy-efficient future high-definition TV. J. Light. Technol. 32(13), 2364–2381 (2014). https://doi.org/10.1109/JLT.2014.2324634

    Article  Google Scholar 

  20. A.Q. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, BitTorrent content distribution in optical networks. J. Light. Technol. 32(21), 4209–4225 (2014). https://doi.org/10.1109/JLT.2014.2351074

    Article  Google Scholar 

  21. A.Q. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, Distributed energy efficient clouds over core networks. J. Light. Technol. 32(7), 1261–1281 (2014). https://doi.org/10.1109/JLT.2014.2301450

    Article  Google Scholar 

  22. A.M. Al-Salim, A.Q. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, Energy efficient big data networks: Impact of volume and variety. IEEE Trans. Netw. Serv. Manag. 15(1), 458–474 (Mar. 2018). https://doi.org/10.1109/TNSM.2017.2787624

    Article  Google Scholar 

  23. A.M. Al-Salim, T.E.H. El-Gorashi, A.Q. Lawey, J.M.H. Elmirghani, Greening big data networks: Velocity impact. IET Optoelectron. 12(3), 126–135 (Jun. 2018). https://doi.org/10.1049/iet-opt.2016.0165

    Article  Google Scholar 

  24. M.S. Hadi, A.Q. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, Patient-centric cellular networks optimization using big data analytics. IEEE Access 7, 49279–49296 (2019). https://doi.org/10.1109/ACCESS.2019.2910224

    Article  Google Scholar 

  25. M.S. Hadi, A.Q. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, Big data analytics for wireless and wired network design: A survey. Comput. Netw. 132, 180–199 (2018). https://doi.org/10.1016/j.comnet.2018.01.016

    Article  Google Scholar 

  26. M. Musa, T. Elgorashi, J. Elmirghani, Bounds for energy-efficient survivable IP over WDMnetworks with network coding. J. Opt. Commun. Netw. 10(5), 471–481 (2018). https://doi.org/10.1364/JOCN.10.000471

    Article  Google Scholar 

  27. M. Musa, T. Elgorashi, J. Elmirghani, Energy efficient survivable IP-over-WDM networks with network coding. J. Opt. Commun. Netw. 9(3), 207–217 (2017). https://doi.org/10.1364/JOCN.9.000207

    Article  Google Scholar 

  28. M.O.I. Musa, T.E.H. El-Gorashi, J.M.H. Elmirghani, Bounds on GreenTouch GreenMeter network energy efficiency. J. Light. Technol. 36(23), 5395–5405 (2018). https://doi.org/10.1109/JLT.2018.2871602

    Article  Google Scholar 

  29. X. Dong, T.E.H. El-Gorashi, J.M.H. Elmirghani, On the energy efficiency of physical topology design for IP over WDM networks. J. Light. Technol. 30(12), 1931–1942 (2012). https://doi.org/10.1109/JLT.2012.2186557

    Article  Google Scholar 

  30. B.G. Bathula, M. Alresheedi, J.M.H. Elmirghani, in Energy Efficient Architectures for Optical Networks. Proceedings of IEEE London Communications Symposium, London, September (2009)

    Google Scholar 

  31. B.G. Bathula, J.M.H. Elmirghani, in Energy Efficient Optical Burst Switched (OBS) Networks. 2009 IEEE Globecom Workshops, Gc Workshops (2009). https://doi.org/10.1109/GLOCOMW.2009.5360734

  32. T.E.H. El-Gorashi, X. Dong, J.M.H. Elmirghani, Green optical orthogonal frequency-division multiplexing networks. IET Optoelectron. 8(3), 137–148 (2014). https://doi.org/10.1049/iet-opt.2013.0046

    Article  Google Scholar 

  33. X. Dong, T. El-Gorashi, J.M.H. Elmirghani, IP over WDM networks employing renewable energy sources. J. Light. Technol. 29(1), 3–14 (2011). https://doi.org/10.1109/JLT.2010.2086434

    Article  Google Scholar 

  34. X. Dong, A. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, in Energy-Efficient Core Networks. 2012 16th International Conference on Optical Networking Design and Modelling, ONDM 2012 (2012). https://doi.org/10.1109/ONDM.2012.6210196

  35. L. Nonde, T.E.H. El-Gorashi, J.M.H. Elmirghani, Energy efficient virtual network embedding for cloud networks. J. Light. Technol. 33(9), 1828–1849 (2015). https://doi.org/10.1109/JLT.2014.2380777

    Article  Google Scholar 

  36. A.N. Al-Quzweeni, A.Q. Lawey, T.E.H. Elgorashi, J.M.H. Elmirghani, Optimized energy aware 5G network function virtualization. IEEE Access 7, 44939–44958 (2019). https://doi.org/10.1109/ACCESS.2019.2907798

    Article  Google Scholar 

  37. Z.T. Al-Azez, A.Q. Lawey, T.E.H. El-Gorashi, J.M.H. Elmirghani, Energy efficient IoT virtualization framework with peer to peer networking and processing. IEEE Access 7, 50697–50709 (2019). https://doi.org/10.1109/ACCESS.2019.2911117

    Article  Google Scholar 

  38. O. Aletri, A. Alahmadi, S.O.M. Saeed, S.H. Mohamed, T.E.H. El-Gorashi, M.T. Alresheedi, J.M.H. Elmirghani, Optimum resource allocation in optical wireless systems with energy-efficient fog and cloud architectures. R. Soc. Open Sci., 1–34 (2019). https://doi.org/10.1098/rsta.2019.0188

  39. R. Deng, R. Lu, C. Lai, T.H. Luan, Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. IEEE Int. Conf. Commun., 3909–3914 (2015, 2015). https://doi.org/10.1109/ICC.2015.7248934

  40. F. Jalali, K. Hinton, R. Ayre, T. Alpcan, R.S. Tucker, Fog computing may help to save energy in cloud computing. IEEE J. Sel. Areas Commun. 34(5), 1728–1739 (2016). https://doi.org/10.1109/JSAC.2016.2545559

    Article  Google Scholar 

  41. B.J. Baliga, R.W.A. Ayre, K. Hinton, R.S. Tucker, F. Ieee, Green Cloud Computing: Balancing Energy in Processing , Storage , and Transport (ScienceOpen, Inc., Burlington, MA, 2011)

    Google Scholar 

  42. A.A. Alahmadi, T. El-gorashi, J. Elmirghani, Energy efficient processing allocation in opportunistic cloud-fog-vehicular edge cloud architectures. arXiv:2006.14659 [cs.NI], June, (2020)

    Google Scholar 

  43. M. Radivojević, P. Matavulj, M. Radivojević, P. Matavulj, PON evolution. Emerg. WDM EPON, 67–99 (2017). https://doi.org/10.1007/978-3-319-54224-9_3

  44. M. Taheri, N. Ansari, A feasible solution to provide cloud computing over optical networks. IEEE Netw. 27(6), 31–35 (2013). https://doi.org/10.1109/MNET.2013.6678924

    Article  Google Scholar 

  45. F. Jalali, S. Khodadustan, C. Gray, K. Hinton, F. Suits, in Greening IoT with Fog: A Survey. Proceedings – 2017 IEEE 1st International Conference on Edge Computing, EDGE 2017, September, pp. 25–31 (2017). https://doi.org/10.1109/IEEE.EDGE.2017.13

  46. W. Yu et al., A survey on the edge computing for the internet of things. IEEE Access 6, 6900–6919 (2017). https://doi.org/10.1109/ACCESS.2017.2778504

    Article  Google Scholar 

  47. B.A. Yosuf, M.O.I. Musa, T.E.H. El-Gorashi, J.M.H. Elmirghani, Energy efficient distributed processing for IoT. arXiv:2001.02974 [cs.NI] (2020)

    Google Scholar 

  48. P. Chołda, P. Jaglarz, Optimization/simulation-based risk mitigation in resilient green communication networks. J. Netw. Comput. Appl. 59, 134–157 (2016). https://doi.org/10.1016/J.JNCA.2015.07.009

    Article  Google Scholar 

  49. D. Meisner, B.T. Gold, T.F. Wenisch, PowerNap: Eliminating server idle power

    Google Scholar 

  50. Cisco visual networking index: Forecast and trends, 2017–2022 White Paper – Cisco. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. Accessed 26 Oct 2019

  51. G. Shen, R.S. Tucker, Energy-minimized design for IP over WDM networks. IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009)

    Article  Google Scholar 

  52. C. Delgado, J.R. Gállego, M. Canales, J. Ortín, S. Bousnina, M. Cesana, On optimal resource allocation in virtual sensor networks. Ad Hoc Netw. 50, 23–40 (2016). https://doi.org/10.1016/j.adhoc.2016.04.004

    Article  Google Scholar 

  53. M. Kašpar, Bandwidth calculator. https://www.cctvcalculator.net/en/calculations/bandwidth-calculator/. Accessed 20 Mar 2019

  54. Thepihut, USB Wifi adapter for the Raspberry Pi. https://thepihut.com/products/raspberry-pi-zero-w. Accessed 21 Mar 2019

  55. RasPi.TV, How much power does Pi Zero W use? http://raspi.tv/2017/how-much-power-does-pi-zero-w-use. Accessed 21 Mar 2019

  56. Cisco ME 4600 series optical network terminal data sheet – Cisco. https://www.cisco.com/c/en/us/products/collateral/switches/me-4600-series-multiservice-optical-access-platform/datasheet-c78-730446.html. Accessed 16 Mar 2018

  57. Cisco ME 4600 series optical line terminal data sheet – Cisco. https://www.cisco.com/c/en/us/products/collateral/switches/me-4600-series-multiservice-optical-access-platform/datasheet-c78-730445.html. Accessed 20 Nov 2019

  58. Cisco network convergence system 5500 series modular chassis data sheet – Cisco. https://www.cisco.com/c/en/us/products/collateral/routers/network-convergence-system-5500-series/datasheet-c78-736270.html. Accessed 26 Oct 2019

  59. Cisco Nexus 9300-FX series switches data sheet – Cisco. https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html. Accessed 26 Oct 2019

  60. Intel® Xeon® Processor E5-2680 (20M Cache, 2.70 GHz, 8.00 GT/s Intel® QPI) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/64583/intel-xeon-processor-e5-2680-20m-cache-2-70-ghz-8-00-gt-s-intel-qpi.html. Accessed 26 Oct 2019

  61. Intel® Xeon® Processor X5675 (12M Cache, 3.06 GHz, 6.40 GT/s Intel® QPI) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/52577/intel-xeon-processor-x5675-12m-cache-3-06-ghz-6-40-gt-s-intel-qpi.html. Accessed 26 Oct 2019

  62. Intel® Xeon® Processor E5–2420 (15M Cache, 1.90 GHz, 7.20 GT/s Intel® QPI) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/64617/intel-xeon-processor-e5-2420-15m-cache-1-90-ghz-7-20-gt-s-intel-qpi.html. Accessed 26 Oct 2019

  63. FAQs – Raspberry Pi Documentation. https://www.raspberrypi.org/documentation/faqs/. Accessed 26 Oct 2019

  64. Raspberry Pi 3: Specs, benchmarks & testing—The MagPi magazine. https://magpi.raspberrypi.org/articles/raspberry-pi-3-specs-benchmarks. Accessed 26 Oct 2019

  65. Raspberry Pi Zero W (Wireless) | The Pi Hut. https://thepihut.com/products/raspberry-pi-zero-w. Accessed 26 Oct 2019

  66. Cisco Industrial Benchmark (2016). https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBootcamp_Performance_Benchmark.pdf. Accessed 16 Mar 2018

  67. America – Google Maps. https://www.google.com/maps/search/america/@42.593777,-113.8013893,5z. Accessed 24 Dec 2019

  68. A. Shehabi et al., United States Data Center Energy Usage Report. Lawrence Berkeley Natl. Lab. Berkeley, CA, Tech. Rep., No. June (2016), pp. 1–66

    Google Scholar 

  69. C. Gray, R. Ayre, K. Hinton, R.S. Tucker, in Power Consumption of IoT Access Network Technologies. 2015 IEEE Int. Conf. Commun. Work., pp. 2818–2823 (2015), https://doi.org/10.1109/ICCW.2015.7247606

  70. S. Banerji, R.S. Chowdhury, On IEEE 802.11: Wireless LAN technology. Orig. Publ. Int. J. Mob. Netw. Commun. Telemat. 3(4) (2013). https://doi.org/10.5121/ijmnct.2013.3405

  71. Data Communications and Computer Networks: A Business User’s Approach – Curt White – Google Books. https://books.google.co.uk/books/about/Data_Communications_and_Computer_Network.html?id=FjV-BAAAQBAJ&redir_esc=y. Accessed 05 Aug 2020

  72. G. Kramer, B. Mukherjee, G. Pesavento, Ethernet PON (ePON): Design and analysis of an optical access network (2000)

    Google Scholar 

  73. P.P. Iannone, et al., in A 160-km Transparent Metro WDM Ring Network Featuring Cascaded Erbium-Doped Waveguide Amplifiers. OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171), vol. 3, pp. WBB3-W1–3 (2001) https://doi.org/10.1109/OFC.2001.928443

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barzan A. Yosuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yosuf, B.A., Alahmadi, A.A., El-Gorashi, T.E.H., Elmirghani, J.M.H. (2021). Cloud Fog Architectures in 6G Networks. In: Wu, Y., et al. 6G Mobile Wireless Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-72777-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72777-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72776-5

  • Online ISBN: 978-3-030-72777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics