Skip to main content

Machine Type Communications in 6G

  • Chapter
  • First Online:
6G Mobile Wireless Networks

Abstract

The sixth generation of mobile networks (6G) is expected to be deployed in the early 2030s. By this time, the density of autonomous Internet-connected machines is expected to explode up to hundreds of devices per cubic meter. These devices (1) generate voluminous multisensory data, (2) access sophisticated artificial intelligence-based services with high frequency, and (3) have widely diverse constraints in terms of latency, bandwidth, energy, and computation power. Such devices are not operated by humans, and communicate with each other and with remote servers located on the network core or edge. The wireless communications between these machines are called machine-type communications (MTC) and can either be between multiple machines that collectively collect and process multidimensional information or between machines that interact with services located on servers. Representative examples include autonomous driving, piloting crewless aerial vehicles, smart grid energy trading, and others. In this chapter, we define the following requirements for 6G, following the predicted density and heterogeneity of the autonomous connected device landscape: (1) ultra-dense wireless communication networks, (2) massive multi-access edge computing, (3) large-scale autonomous operation of devices with heterogeneous requirements and constraints. To address these requirements, 6G will enable a convergence of computing, energy, and communication for device- and application-aware communications. We discuss how 6G can achieve such convergence and highlight the future trends for MTC to ubiquitously integrate the computing landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Pu, X. Chen, J. Xu, X. Fu, D2D fogging: an energy-efficient and incentive-aware task offloading framework via network-assisted D2D collaboration. IEEE J. Selec. Areas Commun. 34(12), 3887–3901 (2016)

    Article  Google Scholar 

  2. D. Chatzopoulos, C. Bermejo, E.u. Haq, Y. Li, P. Hui, D2D task offloading: a dataset-based Q&A. IEEE Commun. Mag. 57(2), 102–107 (2019)

    Google Scholar 

  3. S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, L. Zhao, Vehicle-to-everything (V2X) services supported by lte-based systems and 5G. IEEE Commun. Stand. Mag. 1(2), 70–76 (2017)

    Article  Google Scholar 

  4. X. Fang, S. Misra, G. Xue, and D. Yang, Smart grid–the new and improved power grid: a survey. IEEE Commun. Surveys Tutorials 14(4), 944–980 (2011)

    Article  Google Scholar 

  5. B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S.A. Ashraf, J. Huschke, I. Aktas, J. Ansari, Wireless communication for factory automation: an opportunity for lte and 5G systems. IEEE Commun. Mag. 54(6), 36–43 (2016)

    Article  Google Scholar 

  6. Statista, Number of internet of things (IOT) connected devices worldwide in 2018, 2025 and 2030 (2020). https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/. Accessed 23 July 2019

  7. M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, An evaluation of QoE in cloud gaming based on subjective tests, in 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (2011), pp. 330–335

    Google Scholar 

  8. Z. Dawy, W. Saad, A. Ghosh, J.G. Andrews, E. Yaacoub, Toward massive machine type cellular communications. IEEE Wirel, Commun. 24(1), 120–128 (2017)

    Google Scholar 

  9. Sigfox connected objects: Radio specifications - ref.: Ep-specs rev.: 1.5, SigFox (2020). Accessed 23 July 2019

    Google Scholar 

  10. N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent, Lorawan 1.1 specification. LoRa Alliance (2015). Accessed 23 July 2019

    Google Scholar 

  11. IEEE standard for local and metropolitan area networks–part 15.4: Low-rate wireless personal area networks (LR-WPANs). IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006) (2011), pp. 1–314

    Google Scholar 

  12. Bluetooth core specification v 5.2, Bluetooth(2019). Accessed 23 July 2019

    Google Scholar 

  13. ETSI, ETSI - mobile technologies - 5g, 5g specs—future technology. https://www.etsi.org/technologies/5g. Accessed 23 July 2019

  14. K.B. Letaief, W. Chen, Y. Shi, J. Zhang, Y.A. Zhang, The roadmap to 6G: Ai empowered wireless networks. IEEE Commun. Mag. 57(8), 84–90 (2019)

    Article  Google Scholar 

  15. 6G - the next hyper-connected experience for all. Samsung Research (2020) Accessed 23 July 2019

    Google Scholar 

  16. B. Aazhang, P. Ahokangas, H. Alves, M.-S. Alouini, J. Beek, H. Benn, M. Bennis, J. Belfiore, E. Strinati, F. Chen, K. Chang, F. Clazzer, S. Dizit, D. Kwon, M. Giordiani, W. Haselmayr, J. Haapola, E. Hardouin, E. Harjula, P. Zhu, Key drivers and research challenges for 6G ubiquitous wireless intelligence (white paper) (2019)

    Google Scholar 

  17. N.H. Mahmood, S. Böcker, A. Munari, F. Clazzer, I. Moerman, K. Mikhaylov, O. Lopez, O.-S. Park, E. Mercier, H. Bartz, R. Jäntti, R. Pragada, Y. Ma, E. Annanperä, C. Wietfeld, M. Andraud, G. Liva, Y. Chen, E. Garro, F. Burkhardt, H. Alves, C.-F. Liu, Y. Sadi, J.-B. Dore, E. Kim, J. Shin, G.-Y. Park, S.-K. Kim, C. Yoon, K. Anwar, P. Seppänen, White Paper on Critical and Massive Machine Type Communication Towards 6G (2020)

    Google Scholar 

  18. Cisco edge-to-enterprise IoT analytics for electric utilities solution overview. Cisco (2018). Accessed 23 July 2019

    Google Scholar 

  19. J. Zhang, K.B. Letaief, Mobile edge intelligence and computing for the internet of vehicles. Proc. IEEE 108(2), 246–261 (2019)

    Article  Google Scholar 

  20. L.H. Lee, T. Braud, S. Hosio, P. Hui, Towards augmented reality-driven human-city interaction: Current research and future challenges (2020). Preprint arXiv:2007.09207

    Google Scholar 

  21. V. Özdemir, N. Hekim, Birth of industry 5.0: Making sense of big data with artificial intelligence,“the internet of things” and next-generation technology policy. OMICS: J. Integr. Biol. 22(1), 65–76 (2018)

    Google Scholar 

  22. G. Berardinelli, N.H. Mahmood, I. Rodriguez, P. Mogensen, Beyond 5G wireless irt for industry 4.0: Design principles and spectrum aspects, in 2018 IEEE Globecom Workshops (GC Wkshps) (2018), pp. 1–6

    Google Scholar 

  23. R. Negra, I. Jemili, A. Belghith, Wireless body area networks: applications and technologies. Procedia Comput. Sci. 83, 1274–1281 (2016)

    Article  Google Scholar 

  24. M. Cicioğlu, A. Çalhan, IoT-based wireless body area networks for disaster cases. Int. J. Commun. Syst. 33(13), e3864 (2020)

    Google Scholar 

  25. R. Jain, V. Goel, J.K. Rekhi, J.A. Alzubi, IoT-based green building: Towards an energy-efficient future, in Green Building Management and Smart Automation (IGI Global, Hershey, 2020), pp. 184–207

    Google Scholar 

  26. J. Sachs, P. Popovski, A. Höglund, D. Gozalvez-Serrano, P. Fertl, M. Dohler, T. Nakamura, Machine-Type Communications (Cambridge University Press, 2016), pp. 77–106

    Google Scholar 

  27. A. Aucinas, J. Crowcroft, P. Hui, Energy efficient mobile M2M communications. Proc. ExtremeCom 12, 1–6 (2012)

    Google Scholar 

  28. T. Braud, T. Kämäräinen, M. Siekkinen, P. Hui, Multi-carrier measurement study of mobile network latency: The tale of hong kong and helsinki, in 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) (IEEE, Piscataway, 2019), pp. 1–6

    Google Scholar 

  29. J. Horwitz, The definitive guide to 5G low, mid, and high band speeds. Venture Beat Online Magazine (2019)

    Google Scholar 

  30. T. Kürner, S. Priebe, Towards THz communications-status in research, standardization and regulation. J. Infr. Millimeter Terahertz Waves 35(1), 53–62 (2014)

    Article  Google Scholar 

  31. M. Amjad, H.K. Qureshi, S.A. Hassan, A. Ahmad, S. Jangsher, Optimization of mac frame slots and power in hybrid VLC/RF networks. IEEE Access 8, 21653–21664 (2020)

    Article  Google Scholar 

  32. K. Sucipto, D. Chatzopoulos, S. Kosta, P. Hui, Keep your nice friends close, but your rich friends closer – computation offloading using NFC, in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications (2017), pp. 1–9

    Google Scholar 

  33. D. Chatzopoulos, C. Bermejo, S. Kosta, P. Hui, Offloading computations to mobile devices and cloudlets via an upgraded NFC communication protocol. IEEE Trans. Mobile Comput. 19(3), 640–653 (2020)

    Article  Google Scholar 

  34. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J.R. Smith, Ambient backscatter: Wireless communication out of thin air. ACM SIGCOMM Comput. Commun. Rev. 43(4), 39–50 (2013)

    Article  Google Scholar 

  35. B. Kellogg, A. Parks, S. Gollakota, J.R. Smith, D. Wetherall, Wi-Fi backscatter: Internet connectivity for RF-powered devices, in Proceedings of the 2014 ACM Conference on SIGCOMM (2014), pp. 607–618

    Google Scholar 

  36. K. Ruttik, R. Duan, R. Jäntti, Z. Han, Does ambient backscatter communication need additional regulations?, in 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) (2018), pp. 1–6

    Google Scholar 

  37. J. Qian, F. Gao, G. Wang, S. Jin, H. Zhu, Noncoherent detections for ambient backscatter system. IEEE Trans. Wirel. Commun. 16(3), 1412–1422 (2017)

    Article  Google Scholar 

  38. G. Yang, Y. Liang, R. Zhang, Y. Pei, Modulation in the air: Backscatter communication over ambient ofdm carrier. IEEE Trans. Commun. 66(3), 1219–1233 (2018)

    Article  Google Scholar 

  39. R. Duan, X. Wang, H. Yigitler, M.U. Sheikh, R. Jantti, Z. Han, Ambient backscatter communications for future ultra-low-power machine type communications: challenges, solutions, opportunities, and future research trends. IEEE Commun. Mag. 58(2), 42–47 (2020)

    Article  Google Scholar 

  40. S. Chen, S. Sun, G. Xu, X. Su, Y. Cai, Beam-space multiplexing: Practice, theory, and trends, from 4G TD-LTE, 5G, to 6G and beyond. IEEE Wirel. Commun. 27(2), 162–172 (2020)

    Article  Google Scholar 

  41. E.D. Carvalho, A. Ali, A. Amiri, M. Angjelichinoski, R.W. Heath, Non-stationarities in extra-large-scale massive mimo. IEEE Wirel. Commun. 27(4), 74–80 (2020)

    Article  Google Scholar 

  42. V.C. Rodrigues, A. Amiri, T. Abrão, E. de Carvalho, P. Popovski, Low-complexity distributed xl-mimo for multiuser detection, in 2020 IEEE International Conference on Communications Workshops (ICC Workshops) (2020), pp. 1–6

    Google Scholar 

  43. T. Maksymyuk, J. Gazda, O. Yaremko, D. Nevinskiy, Deep learning based massive mimo beamforming for 5G mobile network, in 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS) (2018), pp. 241–244

    Google Scholar 

  44. J.A. Zhang, X. Huang, Y.J. Guo, J. Yuan, R.W. Heath, Multibeam for joint communication and radar sensing using steerable analog antenna arrays. IEEE Trans. Vehic. Technol. 68(1), 671–685 (2019)

    Article  Google Scholar 

  45. A.A. Boulogeorgos, E.N. Papasotiriou, A. Alexiou, A distance and bandwidth dependent adaptive modulation scheme for thz communications, in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2018), pp. 1–5

    Google Scholar 

  46. A.U. Guler, T. Braud, P. Hui, Spatial interference detection for mobile visible light communication, in 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom) (IEEE, Piscataway, 2018), pp. 1–10

    Google Scholar 

  47. S. Islam, M. Zeng, O.A. Dobre, Noma in 5G systems: Exciting possibilities for enhancing spectral efficiency (2017). Preprint arXiv:1706.08215

    Google Scholar 

  48. D. Duchemin, J.-M. Gorce, C. Goursaud, Code domain non orthogonal multiple access versus aloha: A simulation based study, in 2018 25th International Conference on Telecommunications (ICT) (IEEE, Piscataway, 2018), pp. 445–450

    Google Scholar 

  49. W. Shao, S. Zhang, H. Li, N. Zhao, O.A. Dobre, Angle-domain noma over multicell millimeter wave massive mimo networks. IEEE Trans. Commun. 68(4), 2277–2292 (2020)

    Article  Google Scholar 

  50. M.B. Shahab, R. Abbas, M. Shirvanimoghaddam, S.J. Johnson, Grant-free non-orthogonal multiple access for iot: A survey. IEEE Commun. Surv. Tutor. 22(3), 1805–1838 (2020)

    Article  Google Scholar 

  51. R. Stoica, G.T.F.d. Abreu, Massively concurrent noma: A frame-theoretic design for non-orthogonal multiple access, in 2018 52nd Asilomar Conference on Signals, Systems, and Computers (2018), pp. 461–466

    Google Scholar 

  52. N. Ye, X. Li, H. Yu, A. Wang, W. Liu, X. Hou, Deep learning aided grant-free noma toward reliable low-latency access in tactile internet of things. IEEE Trans. Ind. Inf. 15(5), 2995–3005 (2019)

    Article  Google Scholar 

  53. Y. Chen, A. Bayesteh, Y. Wu, B. Ren, S. Kang, S. Sun, Q. Xiong, C. Qian, B. Yu, Z. Ding, et al., Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Commun. Mag. 56(3), 19–27 (2018)

    Article  Google Scholar 

  54. Q. Zhang, L. Zhang, Y. Liang, P. Kam, Backscatter-noma: a symbiotic system of cellular and internet-of-things networks. IEEE Access 7, 20000–20013 (2019)

    Article  Google Scholar 

  55. C.E. Shannon, Probability of error for optimal codes in a gaussian channel. Bell Syst. Tech. J. 38(3), 611–656 (1959)

    Article  MathSciNet  Google Scholar 

  56. T. Richardson, Error floors of LDPC codes, in Proceedings of the Annual Allerton Conference on Communication Control and Computing, vol. 41 (The University; 1998, 2003), pp. 1426–1435

    Google Scholar 

  57. M. Shirvanimoghaddam, M.S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, et al., Short block-length codes for ultra-reliable low latency communications. IEEE Commun. Mag. 57(2), 130–137 (2018)

    Article  Google Scholar 

  58. F. Clazzer, A. Munari, G. Liva, F. Lazaro, C. Stefanovic, P. Popovski, From 5G to 6G: Has the time for modern random access come? (2019). Preprint arXiv:1903.03063

    Google Scholar 

  59. C. Han, X. Zhang, X. Wang, On medium access control schemes for wireless networks in the millimeter-wave and terahertz bands. Nano Commun. Netw. 19, 67–80 (2019)

    Article  Google Scholar 

  60. I.F. Akyildiz, A. Kak, S. Nie, 6G and beyond: the future of wireless communications systems. IEEE Access 8, 133995–134030 (2020)

    Article  Google Scholar 

  61. V.K. Papanikolaou, P.D. Diamantoulakis, P.C. Sofotasios, S. Muhaidat, G.K. Karagiannidis, On optimal resource allocation for hybrid VLC/RF networks with common backhaul. IEEE Trans. Cognit. Commun. Netw. 6(1), 352–365 (2020)

    Article  Google Scholar 

  62. A. Adnan-Qidan, M. Morales-Céspedes, A.G. Armada, Load balancing in hybrid VLC and RF networks based on blind interference alignment. IEEE Access 8, 72512–72527 (2020)

    Article  Google Scholar 

  63. S. Shrivastava, B. Chen, C. Chen, H. Wang, M. Dai, Deep q-network learning based downlink resource allocation for hybrid RF/VLC systems. IEEE Access 8, 149412–149434 (2020)

    Article  Google Scholar 

  64. A.R. Ndjiongue, T.M.N. Ngatched, O.A. Dobre, A.G. Armada, VLC-based networking: Feasibility and challenges. IEEE Netw. 34(4), 158–165 (2020)

    Article  Google Scholar 

  65. 3GPP, Overview of 3GPP release 12 v0.2.0, Technical Report, 3GPP (2015). https://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/. Accessed 28 Aug 2020

  66. M. Condoluci, L. Militano, A. Orsino, J. Alonso-Zarate, G. Araniti, LTE-direct vs. WiFi-direct for machine-type communications over LTE-a systems, in 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2015), pp. 2298–2302

    Google Scholar 

  67. R.I. Ansari, C. Chrysostomou, S.A. Hassan, M. Guizani, S. Mumtaz, J. Rodriguez, J.J.P.C. Rodrigues, 5G D2D networks: Techniques, challenges, and future prospects. IEEE Sys. J. 12(4), 3970–3984 (2018)

    Article  Google Scholar 

  68. S. Zhang, J. Liu, H. Guo, M. Qi, N. Kato, Envisioning device-to-device communications in 6G. IEEE Netw. 34(3), 86–91 (2020)

    Article  Google Scholar 

  69. P. Zhou, T. Braud, A. Zavodovski, Z. Liu, X. Chen, P. Hui, J. Kangasharju, Edge-facilitated augmented vision in vehicle-to-everything networks. IEEE Trans. Vehic. Technol. 69, 1–1 (2020)

    Article  Google Scholar 

  70. F. Tang, Y. Kawamoto, N. Kato, J. Liu, Future intelligent and secure vehicular network toward 6G: machine-learning approaches. Proc. IEEE 108(2), 292–307 (2020)

    Article  Google Scholar 

  71. Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Concept and applications. CoRR abs/1902.04885 (2019)

    Google Scholar 

  72. A. Singh, P. Vepakomma, O. Gupta, R. Raskar, Detailed comparison of communication efficiency of split learning and federated learning (2019). Preprint arXiv:1909.09145

    Google Scholar 

  73. A.A. Barakabitze, A. Ahmad, R. Mijumbi, A. Hines, 5G network slicing using sdn and NFV: A survey of taxonomy, architectures and future challenges. Comput. Netw. 167, 106984 (2020)

    Article  Google Scholar 

  74. T. Braud, F.H. Bijarbooneh, D. Chatzopoulos, P. Hui, Future networking challenges: The case of mobile augmented reality, in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) (IEEE, Piscataway, 2017), pp. 1796–1807

    Google Scholar 

  75. T. Schierl, C. Hellge, S. Mirta, K. Gruneberg, T. Wiegand, Using h. 264/AVC-based scalable video coding (SVC) for real time streaming in wireless IP networks, in 2007 IEEE International Symposium on Circuits and Systems (IEEE, Piscataway, 2007), pp. 3455–3458

    Google Scholar 

  76. M. Shehab, E. Dosti, H. Alves, M. Latva-aho, On the effective capacity of MTC networks in the finite blocklength regime, in 2017 European Conference on Networks and Communications (EuCNC) (IEEE, Piscataway, 2017), pp. 1–5

    Google Scholar 

  77. W.U. Rehman, T. Salam, A. Almogren, K. Haseeb, I. Ud Din, S.H. Bouk, Improved resource allocation in 5G MTC networks. IEEE Access 8, 49187–49197 (2020)

    Article  Google Scholar 

  78. B. Han, V. Sciancalepore, O. Holland, M. Dohler, H.D. Schotten, D2D-based grouped random access to mitigate mobile access congestion in 5G sensor networks. IEEE Commun. Mag. 57(9), 93–99 (2019)

    Article  Google Scholar 

  79. S. Duan, V. Shah-Mansouri, Z. Wang, V.W.S. Wong, D-ACB: Adaptive congestion control algorithm for bursty M2M traffic in LTE networks. IEEE Trans. Vehic. Technol. 65(12), 9847–9861 (2016)

    Article  Google Scholar 

  80. M. Shehab, E. Dosti, H. Alves, M. Latva-aho, Statistical QOS provisioning for MTC networks under finite blocklength. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–14 (2018)

    Article  Google Scholar 

  81. S. Ali, W. Saad, N. Rajatheva, A directed information learning framework for event-driven M2M traffic prediction. IEEE Commun. Lett. 22(11), 2378–2381 (2018)

    Article  Google Scholar 

  82. B. Sliwa, R. Falkenberg, T. Liebig, N. Piatkowski, C. Wietfeld, Boosting vehicle-to-cloud communication by machine learning-enabled context prediction. IEEE Trans. Intell. Transport. Syst. 21, 3497–3512 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Braud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braud, T., Chatzopoulos, D., Hui, P. (2021). Machine Type Communications in 6G. In: Wu, Y., et al. 6G Mobile Wireless Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-72777-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72777-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72776-5

  • Online ISBN: 978-3-030-72777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics