Skip to main content

The Use of Fuzzy Logic in Various Combinatorial Optimization Problems

Part of the Studies in Computational Intelligence book series (SCI,volume 973)

Abstract

Conventional models of many combinatorial optimization problems rarely encompass real-life problems, because real-life problems usually contain a high degree of uncertainty. These uncertainties can be modeled using various methods, including fuzzy sets. Apart from the precise description from the problems’ nature, fuzzy variables can describe the problem better, improve the solution and reduce costs for decision makers. In this chapter we show how fuzzy logic can be used for modeling uncertainties in combinatorial problems and improve their quality. The focus will be on the Location Set Covering Problem (LSCP), the Maximal Covering Location Problem (MCLP) and the Minimal Covering Location Problem (MinCLP) as a special modification of the MCLP, but the same method could be applied to other problems. These problems are applicable in searching for optimal places for desired and undesired facilities under the given conditions. Each problem will be formally described with its own mathematical model and some of their instances will be solved. Firstly, small-size instances of the problems will be solved with an exact algorithm using the CPLEX optimizer tool, and when a dimension becomes too big for exact solving, the instances will be then solved with a Particle Swarm Optimization (PSO) meta-heuristic.

Keywords

  • Artificial intelligence
  • Aggregation function
  • Triangular norm
  • Ordered weighted sum
  • Fuzzy logic
  • Fuzzy sets
  • Combinatorial optimization
  • Covering location problem
  • Swarm optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72711-6_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72711-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arana-Jiménez, M., Blanco, V., Fernández, E.: On the fuzzy maximal covering location problem. Eur. J. Oper. Res. 283(2), 692–705 (2020)

    MathSciNet  CrossRef  Google Scholar 

  2. Basar, A., Catay, B., Unluyurt, T.: A multi-period double coverage approach for locating the emergency medical service stations in Istanbul. J. Oper. Res. Soc. 62, 627–637 (2011)

    CrossRef  Google Scholar 

  3. Batanović, V., Petrović, D., Petrović, R.: Fuzzy logic based algorithms for maximum covering location problems. Inf. Sci. 179(12), 120–129 (2009)

    CrossRef  Google Scholar 

  4. Bhattacharya, U., Rao, J.R., Tiwari, R.N.: Fuzzy multi-criteria facility location problem. Fuzzy Sets Syst. 51, 277–287 (1992)

    MathSciNet  CrossRef  Google Scholar 

  5. Church, R., ReVelle, C.: The maximal covering location problem. Pap. Region. Sci. Assoc. 32, 101–118 (1974)

    CrossRef  Google Scholar 

  6. Corrêa, F.d.A., Lorena, L.A.N., Ribeiro, G.M.: A decomposition approach for the probabilistic maximal covering location-allocation problem, Comput. Oper. Res. 36(10), 2729-2739 (2009)

    Google Scholar 

  7. Curtin, K.M., Hayslett, K., Qiu, F.: Determining optimal police patrol areas with maximal covering and backup covering location models. Netw. Spatial Econ. 10(1), 125–145 (2010)

    MathSciNet  CrossRef  Google Scholar 

  8. Darzentas, J.: A discrete location model with fuzzy accessibility measures. Fuzzy Sets Syst. 23, 149–154 (1987)

    CrossRef  Google Scholar 

  9. Davari, S., Zarandi, M.H.F., Hemmati, A.: Maximal Covering Location Problem (MCLP) with fuzzy travel times. Expert Syst. Appl. 38(12), 14534–14541 (2011)

    CrossRef  Google Scholar 

  10. Davari, S., Zarandi, M.H.F., Turksen, I.B.: A greedy variable neighborhood search heuristic for the maximal covering location problem with fuzzy coverage radii. Knowl. Based Syst. 41, 68–76 (2013)

    CrossRef  Google Scholar 

  11. Drakulić, D., Takači, Marić M.: Fuzzy covering location problems with different aggregation operators. Filomat 31 (2) (2017)

    Google Scholar 

  12. Drakulić, D., Takači, A., Marić, M.: New model of maximal covering location problem with fuzzy conditions. Comput. Inf. 35(3) (2016)

    Google Scholar 

  13. Drakulić, D.: Fuzzy sets in modelling location problems of combinatorial optimization (Doctoral dissertation, in Serbian). University of East Sarajevo (2016)

    Google Scholar 

  14. Drakulić, D., Takači, Marić M.: Solving minimal covering location problems with single and multiple node coverage, Scientific Bulletin of the Petru Maior University of Targu Mures 1(2) (2016)

    Google Scholar 

  15. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, Berlin, Heidelberg (2004)

    MATH  Google Scholar 

  16. Eiselt, H.A., Marianov, V.: Foundations of Location Analysis. Springer, US (2011)

    CrossRef  Google Scholar 

  17. Guzman, V.C., Pelata, D.A., Verdeay, J.L.: An approach for solving maximal covering location problems with fuzzy constraints. Int. J. Comput. Intell. Syst. 9(4), 734–744 (2016)

    CrossRef  Google Scholar 

  18. Kennedy, J., Eberhart, H.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  19. Kennedy, J., Eberhart, H.: A discrete binary version of the particle swarm algorithm. IEEE Conf. Syst. Man Cybern. 5, 1942–1948 (1997)

    Google Scholar 

  20. Kennedy, J., Eberhart H.: Particle Swarm Optimization. In: Proceedings of 4th IEEE Conference on Neural Networks, Perth, Australia, 1942–1948 (1995)

    Google Scholar 

  21. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logics 8. Kluwer Academic Publishers, Dordrecht/Boston/London (2000)

    CrossRef  Google Scholar 

  22. Marianov, V., Serra, D.: Probabilistic maximal covering location-allocation models for congested systems. J. Region. Sci. 38(3), 401–424 (1998)

    CrossRef  Google Scholar 

  23. Marianov, V., ReVelle, C.: The queuing probabilistic location set covering problem and some extensions. Socio-Econ. Plan. Sci. 28(3), 167–178 (1994)

    CrossRef  Google Scholar 

  24. Murawski, L., Church, R.L.: Improving accessibility to rural health services: the maximal covering network improvement problem. Socio-Econ. Plan. Sci. 43, 102–110 (2009)

    CrossRef  Google Scholar 

  25. Perez, J.A.M., Vega, J.M.M., Verdegay, J.L.: Fuzzy location problems on networks. Fuzzy Sets Syst. 142, 393–405 (2004)

    MathSciNet  CrossRef  Google Scholar 

  26. ReVelle, C.S., Eiselt, H.A.: Location analysis: a synthesis and survey. Eur. J. Oper. Res. 165(1), 1–19 (2005)

    MathSciNet  CrossRef  Google Scholar 

  27. ReVelle, C., Hogan, K.: The maximum reliability location problem and \(\alpha \)-reliable \(p\)-center problem: derivatives of the probabilistic location set covering problem. Ann. Oper. Res. 18, 155–174 (1989)

    MathSciNet  CrossRef  Google Scholar 

  28. ReVelle, C., Hogan, K.: A reliability-constrained siting model with local estimates of busy fractions. Environ. Plan. B: Plan. Des. 15, 143–152 (1988)

    CrossRef  Google Scholar 

  29. Toregas, C., Swain, R., ReVelle, C., Bergmann, L.: The location of emergency service facilities. Oper. Res. 19, 1363–1373 (1971)

    CrossRef  Google Scholar 

  30. Wenxian, G., Jianxin, X., Hongmei, G.: A hybrid PSO for optimizing locations of booster chlorination stations in water distribution systems. In: 2010 International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 126-129 (2010)

    Google Scholar 

  31. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Takači .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Drakulić, D., Takači, A., Marić, M. (2021). The Use of Fuzzy Logic in Various Combinatorial Optimization Problems. In: Pap, E. (eds) Artificial Intelligence: Theory and Applications. Studies in Computational Intelligence, vol 973. Springer, Cham. https://doi.org/10.1007/978-3-030-72711-6_8

Download citation