Skip to main content

Multi-objective Workforce Allocation in Construction Projects

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Managing construction projects is a complex, resource-intense and risky task that involves the organization and management of people skilled in the design and completion of construction projects. Embarking on a construction project means to plan the allocation of resources and labour, while ensuring that the output (e.g. a new building) meets a certain quality, and is delivered in time and within budget without breaching contractual obligations. We formulate a simplified version of this task as a constrained multi-objective optimization problem, and then use a non-dominated sorting genetic algorithm to tackle the problem. In addition to providing a formal definition of the problem, further contributions of this work include the validation of the methodology using real data of construction projects varying in scale and resource-utilisation; the use of real data is scarce in the construction project management area. We also perform a scenario-based analysis to understand how the approach reacts to changing environmental parameters (such as availability of resources). Finally, we discuss practical implications. Our empirical analysis highlights that the proposed approach improves significantly in terms of project budget, quality, and duration targets, when compared with the industry standard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar, A., Kaveh, A., Shoghli, O.R.: Multi-objective optimization of time-cost-quality using multi-colony ant algorithm. Asian J. Civ. Eng. 8, 113–124 (2007)

    MATH  Google Scholar 

  2. Alothaimeen, I., Arditi, D.: Overview of multi-objective optimization approaches in construction project management. In: Multi-criteria Optimization - Pareto-optimal and Related Principles. IntechOpen (2019)

    Google Scholar 

  3. Armand, P., Malivert, C.: Determination of the efficient set in multiobjective linear programming. J. Optim. Theory Appl. 70(3), 467–489 (1991)

    Article  MathSciNet  Google Scholar 

  4. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multi-objective optimization: theoretical foundations and practical implications. Theoret. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ayodele, M., Allmendinger, R., Papamichail, K.N.: Heuristic search in LegalTech: dynamic allocation of legal cases to legal staff. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12566, pp. 326–338. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64580-9_28

    Chapter  Google Scholar 

  6. Chaharsooghi, S., Meimand Kermani, A.H.: An effective ant colony optimization algorithm for multi-objective resource allocation problem. Appl. Math. Comput. 200(1), 642–656 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of an International Conference on Genetic Algorithms and their Applications, vol. 140, pp. 136–140 (1985)

    Google Scholar 

  8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Deniz, G.O., Zhu, Y., Ceron, V.: Time, cost, and environmental impact analysis on construction operation optimization using genetic algorithms. J. Manag. Eng. 28(3), 265–272 (2012)

    Article  Google Scholar 

  11. El-Rayes, K., Kandil, A.: Time-cost-quality trade-off analysis for highway construction. J. Constr. Eng. Manag. 131(4), 447–486 (2005)

    Google Scholar 

  12. Elbeltagi, E., Ammar, M., Sanad, H., Kassab, M.: Overall multi-objective optimization of construction projects scheduling using particle swarm. Eng. Constr. Archit. Manag. 23(3), 265–282 (2016)

    Article  Google Scholar 

  13. Ghoddousi, P., Eshtehardian, E., Jooybanpour, S.: Multi-mode resource-constrained discrete time-cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Autom. Constr. 30, 216–227 (2013)

    Article  Google Scholar 

  14. Gomar, J.E., Haas, C.T., Morton, D.P.: Assignment and allocation optimization of partially multi-skilled workforce. J. Constr. Eng. Manag. 128(2), 103–109 (2002)

    Article  Google Scholar 

  15. Kwan, D.W., Lo, E.S., Schober, R.: Multi-objective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Trans. Veh. Technol. 65(5), 3166–3184 (2015)

    Google Scholar 

  16. Leu, S.S., Yang, C.H.: GA-based multi-criteria optimal model for construction scheduling. J. Constr. Eng. Manag. 125(6), 420–427 (1999)

    Article  Google Scholar 

  17. Li, Q., Tao, S., Chong, H.Y., Dong, Z.S.: Robust optimization for integrated construction scheduling and multiscale resource allocation. Complexity 2018, 1–17 (2018)

    Google Scholar 

  18. Ma, W., Che, Y., Ke, H.: Preemptive multi-mode resource-constrained discrete time-cost-resource optimization via non-dominated sorting genetic algorithm. In: Qi, E. (ed.) Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation, pp. 719–728. Atlantis Press, Paris (2016). https://doi.org/10.2991/978-94-6239-145-1_68

    Chapter  Google Scholar 

  19. Marzouk, M., Madany, M., Abou-Zied, A., El-said, M.: Handling construction pollution using multi-objective optimization. Constr. Manag. Econ. 26(10), 1113–1125 (2008)

    Article  Google Scholar 

  20. Nauss, R.M.: Solving the generalized assignment problem: an optimizing and heuristic approach. INFORMS J. Comput. 15(3), 249–266 (2003)

    Article  MathSciNet  Google Scholar 

  21. Oke, A.E., Aghimien, D.O.: Drivers of value management in the Nigerian construction industry. J. Eng. Des. Technol. 16, 270–284 (2020)

    Google Scholar 

  22. Osman, M., Abo-Sinna, M., Mousa, A.: An effective genetic algorithm approach to multi-objective resource allocation problems. Appl. Math. Comput. 136(2), 755–768 (2005)

    MATH  Google Scholar 

  23. Panwar, A., Jha, K.: A many-objective optimization model for construction scheduling. Constr. Manag. Econ. 37(12), 727–739 (2019)

    Article  Google Scholar 

  24. Senouci, A.B., Eldin, N.N.: Use of genetic algorithms in resource scheduling of construction projects. J. Constr. Eng. Manag. 130(6), 869–877 (2004)

    Article  Google Scholar 

  25. Soylu, B., Köksalan, M.: An evolutionary algorithm for the multi-objective multiple knapsack problem. In: Shi, Y., Wang, S., Peng, Y., Li, J., Zeng, Y. (eds.) MCDM 2009. CCIS, vol. 35, pp. 1–8. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02298-2_1

    Chapter  Google Scholar 

  26. Tareghian, H.R., Taheri, S.H.: On the discrete time, cost and quality trade-off problem. Appl. Math. Comput. 181(2), 1305–1312 (2006)

    MATH  Google Scholar 

  27. Tofan, S., Allmendinger, R., Zanda, M., Stephens, O.: Heuristic allocation of computational resources. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1256–1263 (2017)

    Google Scholar 

  28. Walker, A.: Project Management in Construction. Wiley, Hoboken (2015)

    Google Scholar 

  29. Zhang, H., Xing, F.: Fuzzy multi-objective particle swarm optimization for time-cost-quality trade-off in construction. Autom. Constr. 19(8), 1067–1075 (2010)

    Article  Google Scholar 

  30. Zheng, H.: The bi-level optimization research for time-cost-quality-environment trade-off scheduling problem and its application to a construction project. In: Xu, J., Hajiyev, A., Nickel, S., Gen, M. (eds.) Proceedings of the Tenth International Conference on Management Science and Engineering Management. AISC, vol. 502, pp. 745–753. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1837-4_62

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like ASGC for supporting this study and providing real-world construction data available for the analysis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iskandar, A., Allmendinger, R. (2021). Multi-objective Workforce Allocation in Construction Projects. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics