Skip to main content

Estimation of Grain-Level Residual Stresses in a Quenched Cylindrical Sample of Aluminum Alloy AA5083 Using Genetic Programming

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Residual stresses are originated during manufacturing processes of metallic materials, so its study is important to avoid catastrophic accidents during component service. There are two main types of residual stresses, according to the length scale; macroscopic and microscopic. While the determination of tmacroscopic ones is almost a routine analysis, determining the microscopic stress of individual grains remains a pending task. In this paper, we present an approach using genetic programming to obtain the micro residual stresses in grains of a quenched cylindrical sample of aluminium alloy AA5083. The microstructure of this alloy is formed by grains with different orientation and stress. To obtain the stress of each grain we estimate the values of the micro residual stresses for each crystallographic orientation using information from neutron and electron back-scattered diffraction experiments. This information includes orientation maps of a normal section to the cylinder axes (individual orientations) and the dimensions of each grain. We assume that the micro residual stresses of each grain can be expressed as a function based on these variables and use genetic programming to find this expression.

Supported by FEDER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://dev.heuristiclab.com.

  2. 2.

    Output has to be scaled linearly to the range of the diffraction measurement.

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. 1st edn, Chapman & Hall/CRC, Boca Raton (2009)

    Google Scholar 

  2. Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms. Citeseer (1991)

    Google Scholar 

  3. Bokuchava, G., Papushkin, I.: Neutron time-of-flight stress diffractometry. J. Surface Invest. X-ray Synchrotron Neutron Tech. 12(1), 97–102 (2018)

    Google Scholar 

  4. Cioffi, F., et al.: Analysis of the unstressed lattice spacing, d0, for the determination of the residual stress in a friction stir welded plate of an age-hardenable aluminum alloy-use of equilibrium conditions and a genetic algorithm. Acta Materialia 74, 189–199 (2014)

    Article  Google Scholar 

  5. Fernández, R., Ferreira-Barragáns, S., Ibáñez, J., González-Doncel, G.: A multi-scale analysis of the residual stresses developed in a single-phase alloy cylinder after quenching. Mater. Des. 137, 117–127 (2018). https://doi.org/10.1016/j.matdes.2017.10.013

    Article  Google Scholar 

  6. Grajales, D.H.M.: Principios y aplicaciones de la técnica de difracción de electrones retro-proyectados (ebsd, electron back-scattering diffraction). Informador técnico 74, (2010)

    Google Scholar 

  7. Hidalgo, J.I., Fernández, R., Colmenar, J.M., Cioffi, F., Risco-Martín, J.L., González-Doncel, G.: Using evolutionary algorithms to determine the residual stress profile across welds of age-hard enable aluminum alloys. Appl. Soft. Comput. 40, 429–438 (2016)

    Article  Google Scholar 

  8. Karak, S.K., Chatterjee, S., Bandopadhyay, S.: Mathematical modelling of the physical and mechanical properties of nano-Y2O3 dispersed ferritic alloys using evolutionary algorithm-based neural network. Powder Tech. 274, 217–226 (2015)

    Article  Google Scholar 

  9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  10. Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000). https://doi.org/10.1109/4235.873237

  11. Millán, L., Bokuchava, G., Fernández, R., Papushkin, I., González-Doncel, G.: Further insights on the stress equilibrium method to investigate macroscopic residual stress fields: case of aluminum alloys cylinders. J. Alloys Compd. 861, 158506 (2020)

    Google Scholar 

  12. Romero, M.: Determinación de la textura en aleaciones de aluminio aa-3003 con temple h14 a través de la técnica ebsd

    Google Scholar 

  13. Vijayan, D., Abhishek, P.: Multi objective process parameters optimization of friction stir welding using nsga-ii. In: IOP Conference Series: Materials Science and Engineering, vol. 390, p. 012087 (2018)

    Google Scholar 

  14. Wagner, S., Affenzeller, M.: SexualGA: gender-specific selection for genetic algorithms. In: Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI), vol. 4, pp. 76–81 (2005)

    Google Scholar 

  15. Zhang, R., et al.: The influence of grain size and grain orientation on sensitization in aa5083. Corrosion 72(2), 160–168 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Madrid Regional Government-FEDER grants Y2018/NMT-4668 (Micro-Stress- MAP-CM) and MAT2017-83825-C4-1-R. Thanks are also due to the FLNR-JINP for the beam time allocated on FSD instrument and to the Centrum Výzkumu Ŕeź, in Prague, for the EBSD map and the micro-structural analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Kronberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Millán, L., Kronberger, G., Hidalgo, J.I., Fernández, R., Garnica, O., González-Doncel, G. (2021). Estimation of Grain-Level Residual Stresses in a Quenched Cylindrical Sample of Aluminum Alloy AA5083 Using Genetic Programming. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics