Skip to main content

A Multi-objective Multi-type Facility Location Problem for the Delivery of Personalised Medicine

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12694))

Abstract

Advances in personalised medicine targeting specific sub-populations and individuals pose a challenge to the traditional pharmaceutical industry. With a higher level of personalisation, an already critical supply chain is facing additional demands added by the very sensitive nature of its products. Nevertheless, studies concerned with the efficient development and delivery of these products are scarce. Thus, this paper presents the case of personalised medicine and the challenges imposed by its mass delivery. We propose a multi-objective mathematical model for the location-allocation problem with two interdependent facility types in the case of personalised medicine products. We show its practical application through a cell and gene therapy case study. A multi-objective genetic algorithm with a novel population initialisation procedure is used as solution method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A temperature-controlled supply chain that maintains a product viable through decreases in temperature.

  2. 2.

    Code for both MOO algorithms is available at doi: 10.5281/zenodo.4495163.

References

  1. Abou-El-Enein, M., Elsanhoury, A., Reinke, P.: Overcoming challenges facing advanced therapies in the EU market. Cell Stem Cell 19(3), 293–297 (2016)

    Article  Google Scholar 

  2. Ahmadi-Javid, A., Seyedi, P., Syam, S.S.: A survey of healthcare facility location. Comput. Oper. Res. 79, 223–263 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ardjmand, E., Weckman, G.R., Park, N., Taherkhani, P., Manjeet, S.: Applying genetic algorithm to a new location and routing model of hazardous materials. Int. J. Prod. Res. 53, 916–928 (2015)

    Article  Google Scholar 

  4. Basu, S., Sharma, M., Ghosh, P.S.: Metaheuristic applications on discrete facility location problems: a survey. Opsearch 52(3), 530–561 (2014). https://doi.org/10.1007/s12597-014-0190-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Bersenev, A., Kili, S.: Management of ‘out of specification’ commercial autologous CAR-T cell products. Cell Gene Therapy Insights 4(11), 1051–1058 (2018)

    Article  Google Scholar 

  6. Bhattacharya, R., Bandyopadhyay, S.: Solving conflicting bi-objective facility location problem by NSGA II evolutionary algorithm. Int. J. Adv. Manuf. Technol. 51(1–4), 397–414 (2010)

    Article  Google Scholar 

  7. Burkholder, T.W., Hill, K., Hynes, E.J.C.: Developing emergency care systems: a human rights-based approach. Bull. World Health Organ. 97(9), 612–619 (2019)

    Article  Google Scholar 

  8. CBER: Kymriah (tisagenlecleucel) (2017). https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel. Accessed 20 Sept 2020

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Doerner, K.F., Gutjahr, W.J., Nolz, P.C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31(3), 651–678 (2008)

    Article  MathSciNet  Google Scholar 

  11. Eder, C., Wild, C.: Technology forecast: advanced therapies in late clinical research, EMA approval or clinical application via hospital exemption. J. Market Access Health Policy 7(1), 1600939 (2019)

    Article  Google Scholar 

  12. Eghbali, M., Abedzadeh, M., Setak, M.: Multi-objective reliable hub covering location considering customer convenience using NSGA-II. Int. J. Syst. Assur. Eng. Manage. 5(3), 450–460 (2013). https://doi.org/10.1007/s13198-013-0189-y

    Article  Google Scholar 

  13. Ermak, G.: Emerging medical technologies. World Scientific (2016)

    Google Scholar 

  14. Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Model. 34, 1689–1709 (2010)

    Article  MathSciNet  Google Scholar 

  15. Gonçalves, E.: Advanced therapy medicinal products: value judgement and ethical evaluation in health technology assessment. Eur. J. Health Econ. 21(3), 311–320 (2020). https://doi.org/10.1007/s10198-019-01147-x

    Article  Google Scholar 

  16. Hanley, P.J.: Fresh versus frozen: effects of Cryopreservation on CAR T Cells. Mol. Therapy 27(7), 1213–1214 (2019), ISSN 15250024

    Google Scholar 

  17. Hiassat, A., Diabat, A., Rahwan, I.: A genetic algorithm approach for location-inventory-routing problem with perishable products. J. Manuf. Syst. 42, 93–103 (2017)

    Article  Google Scholar 

  18. Jarosławski, S., Toumi, M.: Sipuleucel-t (Provenge) - Autopsy of an Innovative Paradigm Change in Cancer Treatment: Why a Single-Product Biotech Company Failed to Capitalize on its Breakthrough Invention. BioDrugs 29(5), 301–307 (2015)

    Article  Google Scholar 

  19. Lander, E.S., Linton, L.M., Birren, B.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)

    Article  Google Scholar 

  20. Lopes, A.G., Noel, R., Sinclair, A.: Cost analysis of vein-to-vein CAR T-cell therapy: automated manufacturing and supply chain. Cell Gene Therapy Insights 6(3), 487–510 (2020)

    Article  Google Scholar 

  21. Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. Journal of Heuristics 15(2), 153–176 (2009)

    Article  Google Scholar 

  22. Nematollahi, M., Hosseni-Motlagh, S.M., Heydari, J.: Economic and social collaborative decision-making on visit interval and service level in a two-echelon pharmaceutical supply chain. J. Clean. Prod. 142, 3956–3969 (2017)

    Article  Google Scholar 

  23. Panch, S.R., et al.: Effect of cryopreservation on autologous chimeric antigen receptor T-Cell characteristics. Mol. Therapy 27(7), 1275–1285 (2019), ISSN 15250024

    Google Scholar 

  24. Papathanasiou, M.M., Stamatis, C., Lakelin, M., Farid, S., Titchener-Hooker, N., Shah, N.: Autologous CAR T-cell therapies supply chain: challenges and opportunities? Cancer Gene Ther. 27(10–11), 799–809 (2020)

    Article  Google Scholar 

  25. Pirabán, A., Guerrero, W.J., Labadie, N.: Survey on blood supply chain management: models and methods. Comput. Oper. Res. 112, 104756 (2019)

    Google Scholar 

  26. Quinn, C., Young, C., Thomas, J., Trusheim, M.: Estimating the Clinical Pipeline of Cell and Gene Therapies and Their Potential Economic Impact on the US Healthcare System. Value Health 22(6), 621–626 (2019)

    Article  Google Scholar 

  27. Rahmani, A., Mirhassani, S.: A hybrid Firefly-Genetic Algorithm for the capacitated facility location problem. Inf. Sci. 283, 70–78 (2014)

    Article  MathSciNet  Google Scholar 

  28. Redekop, W.K., Mladsi, D.: The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health 16(6), (2013)

    Google Scholar 

  29. Alliance for Regenerative Medicine: Clinical Trials in Europe: Recent Trends in ATMP Development. Technical report ARM, October 2019

    Google Scholar 

  30. Sexauer, A., Sandlund, J.T., Marcus, K.J.: Paediatric Leukemia and Lymphoma. In: Gunder’s & Tepper’s Clinical Radiation Oncology, pp. 1468–1476, Elsevier (2020)

    Google Scholar 

  31. Sinclair, A., Monge, M.: Measuring Manufacturing Cost and Its Impact on Organizations. BioProcess International, p. 36–44 (2010)

    Google Scholar 

  32. Steliarova-Fourcher, E., Colombet, M., Ries, L., Moreno, F., Dolya, A., Bray, F., et. al.: International incidence of childhood cancer, 2001–2010: a population based registry study. Lancet Oncol. 18(6), 719–731 (2017)

    Google Scholar 

  33. Sun, W., Malvar, J., Sposto, R., Verma, A., et al.: Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia 32(11), 2316–2325 (2018)

    Article  Google Scholar 

  34. Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147(1), 109–141 (2006)

    Article  MathSciNet  Google Scholar 

  35. Wang, B., Liang, Y., Zheng, T., Yuan, M., Zhang, H.: Multi-objective site selection optimization of the gas-gathering station using nsga-ii. Process Saf. Environ. Prot. 119, 350–359 (2018)

    Article  Google Scholar 

  36. Wang, X., Kong, Q., Papathanasiou, M.M., Shah, N.: Precision healthcare supply chain design through multi-objective stochastic programming. 13th International Symposium on Process Systems Engineering (PSE 2018) Computer Aided Chemical Engineering, p. 2137–2142 (2018)

    Google Scholar 

  37. Weiss, D., Rydland, H.T., Øversveen, E., Jensen, M.R., Solhaug, S., Krokstad, S.: Innovative technologies and social inequalities in health: A scoping review of the literature. PLoS One 13(4), e0195447 (2018)

    Google Scholar 

  38. Wilson, B., Nicholls, S.G.: The Human Genome Project, and recent advances in personalized genomics. Risk Management and Healthcare Policy, p. 9–20 (2015)

    Google Scholar 

  39. Yang, L., Jones, B.F., Yang, S.H.: A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. Eur. J. Oper. Res. 181(2), 903–915 (2007)

    Article  Google Scholar 

  40. Ebrahimi Zade, A., Sadegheih, A., Lotfi, M.M.: A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments. J. Ind. Eng. Int. 10(4), 185–197 (2014). https://doi.org/10.1007/s40092-014-0076-4

    Article  Google Scholar 

Download references

Acknowledgements

We thank Biopharm Services for their assistance with this project. Biopharm provided us with extensive datasets and invaluable feedback on the research. Their contribution has significantly increased the quality and accuracy of this paper. M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished Researcher (BEAGAL 18/00053) funded by the Ministry of Science and Innovation of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea Avramescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avramescu, A., Allmendinger, R., López-Ibáñez, M. (2021). A Multi-objective Multi-type Facility Location Problem for the Delivery of Personalised Medicine. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics