Skip to main content

Abstract

Monoclonal antibodies (mAbs) have the advantages of high specificity and stable expression. Monoclonal IgY (mIgY) is a new antibody development that combines advantages of IgY and mAbs. mIgY have great potential for immunological detection and diagnosis, for screening and validating biomarkers and drug targets, and for the production of antibodies against conserved mammalian proteins. mIgY can be developed into small molecular weight antibody fragments (particularly scFv), chimeric and humanized antibodies to address the many challenges lying ahead to develop mAb for various biomedical applications, especially those for which conventional antibodies are ineffective. Hybridoma technology or display technology, including phage display, yeast surface display and ribosomal display, can be applied in mIgY generation. However, hybridoma technology is very inefficient in the chicken system due to the lack of a robust avian immortal cell line for hybridoma cell generation. New technologies and different types of antibodies are likely to broaden the application of avian antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 16 September 2021

    The original version of the book was inadvertently published with only one of the three affiliations of the volume editor and chapter author Xiao-Ying Zhang.

References

  • Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods 242(1–2):159–181

    Article  CAS  PubMed  Google Scholar 

  • Baloch AR, Baloch AW, Sutton BJ, Zhang X (2014) Antibody mimetics: promising complementary agents to animal-sourced antibodies. Crit Rev Biotechnol 36(2):268–275

    Article  PubMed  CAS  Google Scholar 

  • Barbas CF III, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88(18):7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426

    Article  CAS  PubMed  Google Scholar 

  • Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557

    Article  CAS  PubMed  Google Scholar 

  • Bogen JP, Grzeschik J, Krah S, Zielonka S, Kolmar H (2020) Rapid generation of chicken immune libraries for yeast surface display. Methods Mol Biol. (Clifton, N.J.) 2070:289–302

    Article  CAS  PubMed  Google Scholar 

  • Ching KH, Collarini EJ, Abdiche YN, Bedinger D, Pedersen D, Izquierdo S, Harriman R, Zhu L, Etches RJ, van de Lavoir MC, Harriman WD, Leighton PA (2018) Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets. MAbs 10(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Cumbers SJ, Williams GT, Davies SL, Grenfell RL, Takeda S, Batista FD, Sale JE, Neuberger MS (2002) Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat Biotechnol 20(11):1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Drees JJ, Augustin LB, Mertensotto MJ, Schottel JL, Leonard AS, Saltzman DA (2014) Soluble production of a biologically active single-chain antibody against murine PD-L1 in Escherichia coli. Protein Expr Purif 94:60–66

    Article  CAS  PubMed  Google Scholar 

  • Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224(2):487–499

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Xu L, Li B, Zhong F, Liu X, Zhang X (2020) Canine parvovirus is efficiently diagnosed and it neutralized by chicken IgY-scFv generated against the virus capsid protein. Vet Res 51(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greunke K, Braren I, Alpers I, Blank S, Sodenkamp J, Bredehorst R, Spillner E (2008) Recombinant IgY for improvement of immunoglobulin-based analytical applications. Clin Biochem 41(14–15):1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Plückthun A (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A 95(24):14130–14135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94(10):4937–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Taussig MJ (2007) Eukaryotic ribosome display with in situ DNA recovery. Nat Methods 4(3):281–288

    Article  CAS  PubMed  Google Scholar 

  • Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, G. (Winter 1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (fab) heavy and light chains. Nucleic Acids Res 19(15):4133–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S (2007) Single chain fab (scFab) fragment. BMC Biotechnol 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izquierdo SM, Varela S, Park M, Collarini EJ, Lu D, Pramanick S, Rucker J, Lopalco L, Etches R, Harriman W (2016) High-efficiency antibody discovery achieved with multiplexed microscopy. Microscopy (Oxford, England) 65(4):341–352

    CAS  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, G. (Winter 1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069):522–525

    Article  CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  Google Scholar 

  • Kurosawa K, Lin W, Ohta K (2014) Chimeric antibodies. In: Steinitz M (ed) Human monoclonal antibodies: methods and protocols, vol 1060. Springer Science+Business Media, New York, pp 139–148

    Chapter  Google Scholar 

  • Lee W, Ali SA, Leow CY, Tan SC, Leow CH (2018a) Isolation and characterization of a novel anti-salbutamol chicken scFv for human doping urinalysis. Anal Biochem 555:81–93

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Atif AS, Tan SC, Leow CH (2017) Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. J Immunol Methods 447:71–85

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Leu SJ, Lee YC, Liu CI, Lin LT, Mwale PF, Chiang JR, Tsai BY, Chen CC, Hung CS, Yang YY (2018b) Characterization of chicken-derived single chain antibody fragments against venom of Naja Naja Atra. Toxins 10(10):383

    Article  CAS  PubMed Central  Google Scholar 

  • Li C, He J, Ren H, Zhang X, Du E, Li X (2016) Preparation of a chicken scFv to analyze gentamicin residue in animal derived food products. Anal Chem 88(7):4092–4098

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Mitsuda H, Nakamura N, Furusawa S, Mohri S, Kitamoto T (1999) A chicken monoclonal antibody with specificity for the N-terminal of human prion protein. FEMS Immunol Med Microbiol 23(3):189–194

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Horiuchi H, Furusawa S, Horiuchi M, Shinagawa M, Matsuda H (1998) Chicken monoclonal antibodies against synthetic bovine prion protein peptide. J Vet Med Sci 60(6):777–779

    Article  CAS  PubMed  Google Scholar 

  • McCafferty J, Johnson KS (1996) Construction and screening of antibody display libraries. In: Kay BK, Winter J, McCafferty J (eds) Phage display of peptides and proteins: a laboratory manual. Academic, San Diego, pp 79–111

    Chapter  Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81(21):6851–6855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura N, Aoki Y, Horiuchi H, Furusawa S, Yamanaka HI, Kitamoto T, Matsuda H (2000) Construction of recombinant monoclonal antibodies from a chicken hybridoma line secreting specific antibody. Cytotechnology 32(3):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura N, Shimokawa M, Miyamoto K, Hojyo S, Horiuchi H, Furusawa S, Matsuda H (2003) Two expression vectors for the phage-displayed chicken monoclonal antibody. J Immunol Methods 280(1–2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Shuyama A, Hojyo S, Shimokawa M, Miyamoto K, Kawashima T, Aosasa M, Horiuchi H, Furusawa S, Matsuda H (2004) Establishment of a chicken monoclonal antibody panel against mammalian prion protein. J Vet Med Sci 66(7):807–814

    Article  CAS  PubMed  Google Scholar 

  • Nesspor TC, Scallon B (2014) Chimeric antibodies with extended half-life in ferrets. Influenza Other Respir Viruses 8(5):596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishibori N, Horiuchi H, Furusawa S, Matsuda H (2006) Humanization of chicken monoclonal antibody using phage-display system. Mol Immunol 43(6):634–642

    Article  CAS  PubMed  Google Scholar 

  • Nishibori N, Shimamoto T, Nakamura N, Shimokawa M, Horiuchi H, Furusawa S, Matsuda H (2004) Expression vectors for chicken-human chimeric antibodies. Biologicals 32(4):213–218

    Article  CAS  PubMed  Google Scholar 

  • Nishinaka S, Akiba H, Nakamura M, Suzuki K, Suzuki T, Tsubokura K, Horiuchi H, Furusawa S, Matsuda H (1996) Two chicken B cell lines resistant to ouabain for the production of chicken monoclonal antibodies. J Vet Med Sci 58(11):1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Nishinaka S, Matsuda H, Murata M (1989) Establishment of a chicken X chicken hybridoma secreting specific antibody. Int Arch Allergy Appl Immunol 89(4):416–419

    Article  CAS  PubMed  Google Scholar 

  • Nishinaka S, Suzuki T, Matsuda H, Murata M (1991) A new cell line for the production of chicken monoclonal antibody by hybridoma technology. J Immunol Methods 139(2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Pink JRL (1986) Counting components of the chicken's B cell system. Immunol Rev 91(1):115–128

    Article  CAS  PubMed  Google Scholar 

  • Pitaksajjakul P, Lekcharoensuk P, Upragarin N, Barbas CF III, Ibrahim MS, Ikuta K, Ramasoota P (2010) Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library. Biochem Biophys Res Commun 395(4):496–501

    Article  CAS  PubMed  Google Scholar 

  • Plückthun A (2012) Ribosome display: a perspective. In: Douthwaite J, Jackson R (eds) Ribosome display and related technologies. Methods in molecular biology (methods and protocols), vol 805. Springer, New York

    Google Scholar 

  • Qi Y, Wu C, Zhang S, Wang Z, Huang S, Dai L, Wang S, Xia L, Wen K, Cao X, Wu Y, Shen J (2009) Selection of anti-sulfadimidine specific ScFvs from a hybridoma cell by eukaryotic ribosome display. PLoS One 4(7):e6427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu XQ, Wang H, Cai B, Wang LL, Yue ST (2007) Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting. Nat Biotechnol 25(8):921–929

    Article  CAS  PubMed  Google Scholar 

  • Quintero-Hernández V, Juárez-González VR, Ortíz-León M, Sánchez R, Possani LD, Becerril B (2007) The change of the scFv into the fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Mol Immunol 44(6):1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10(12):866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapats SI, Heine HG, Trinidad L, Gould GJ, Foord AJ, Doolan SG, Prowse S, Ignjatovic J (2003) Generation of chicken single chain antibody variable fragments (scFv) that differentiate and neutralize infectious bursal disease virus (IBDV). Arch Virol 148(3):497–515

    Article  CAS  PubMed  Google Scholar 

  • Schöenfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H, Hülsmeyer M, Brown N, Kaye PM, Schlehuber S, Hohlbaum AM, Skerra A (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci U S A 106(20):8198–8203

    Article  Google Scholar 

  • Schusser B, Yi H, Collarini EJ, Izquierdo SM, Harriman WD, Etches RJ, Leighton PA (2013) Harnessing gene conversion in chicken B cells to create a human antibody sequence repertoire. PLoS One 8(11):e80108

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo H, Hashimoto S, Tsuchiya K, Lin W, Shibata T, Ohta K (2006) An ex vivo method for rapid generation of monoclonal antibodies (ADLib system). Nat Protoc 1(3):1502–1506

    Article  CAS  PubMed  Google Scholar 

  • Seo H, Masuoka M, Murofushi H, Takeda S, Shibata T, Ohta K (2005) Rapid generation of specific antibodies by enhanced homologous recombination. Nat Biotechnol 23(6):731–735

    Article  CAS  PubMed  Google Scholar 

  • Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18(2):57–63

    Article  CAS  PubMed  Google Scholar 

  • Silverman J, Liu Q, Bakker A, To W, Duguay A, Alba BM, Smith R, Rivas A, Li P, Le H, Whitehorn E, Moore KW, Swimmer C, Perlroth V, Vogt M, Kolkman J, Stemmer WPC (2005) Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 23(12):1556–1561

    Article  CAS  PubMed  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  PubMed  Google Scholar 

  • Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T (2014) The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs 6(1):204–218

    Article  PubMed  Google Scholar 

  • Studnicka GM, Soares S, Better M, Williams RE, Nadell R, Horwitz AH (1994) Human-engineered monoclonal antibodies retain full specific binding activity by preserving non-CDR complementarity-modulating residues. Protein Eng 7(6):805–814

    Article  CAS  PubMed  Google Scholar 

  • Tateishi Y, Nishimichi N, Horiuchi H, Furusawa S, Matsuda H (2008) Construction of chicken-mouse chimeric antibody and immunogenicity in mice. J Vet Med Sci 70(4):397–400

    Article  CAS  PubMed  Google Scholar 

  • Tsai KC, Chang CD, Cheng MH, Lin TY, Lo YN, Yang TW, Chang FL, Chiang CW, Lee YC, Yen Y (2019) Chicken-derived humanized antibody targeting a novel epitope F2pep of fibroblast growth factor receptor 2: potential cancer therapeutic agent. ACS Omega 4(1):2387–2397

    Article  CAS  Google Scholar 

  • Tsurushita N, Park M, Pakabunto K, Ong K, Avdalovic A, Fu H, Jia A, Vásquez M, Kumar S (2004) Humanization of a chicken anti-IL-12 monoclonal antibody. J Immunol Methods 295(1–2):9–19

    Article  CAS  PubMed  Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Article  CAS  PubMed  Google Scholar 

  • Webster R (2001) Filamentoous phage biology. In: Barbas CF III, Burton DR, Scott JK, Silverman GJ (eds) A laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 1–37

    Google Scholar 

  • Yamanaka HI, Kirii Y, Ohmoto H (1995) An improved phage display antibody cloning system using newly designed PCR primers optimized for Pfu DNA polymerase. J Biochem 117(6):1218–1227

    Article  CAS  PubMed  Google Scholar 

  • Zhen ZP, Zhang J, Zhang SY (2009) Development of a novel small antibody that retains specificity for tumor targeting. J Exp Clin Cancer Res 28(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiuan Herng Leow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leow, C.H., Xu, L., Harley, C.A., Vieira-Pires, R.S., Zhang, X. (2021). Monoclonal IgY Antibodies. In: Zhang, XY., Vieira-Pires, R.S., Morgan, P.M., Schade, R. (eds) IgY-Technology: Production and Application of Egg Yolk Antibodies. Springer, Cham. https://doi.org/10.1007/978-3-030-72688-1_13

Download citation

Publish with us

Policies and ethics