Skip to main content

Genomic Landscape and Clonal Evolution of AML

  • Chapter
  • First Online:
Acute Myeloid Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1203 Accesses

Abstract

In most cases, acute myeloid leukemia (AML) develops from hematopoietic cells that have acquired somatic mutations over time. Since the first balanced translocation described by Janet Rowley in 1972, there has been a growing knowledge on the pathogenic relevance of the genomic aberrations underlying the biological and clinical complexity of AML. Recently, molecular genomics have begun to unravel mechanisms of clonal leukemia evolution and disease dynamics, especially as novel technologies allow us to capture multiple competing clones coexisting at any disease time point. In this book chapter, a short summary of the genomic landscape and the impact of genomic changes on the individual patient outcome are given. Molecular diagnostics provide the basis for clinically relevant genomic classification schemes such as the 2017 European LeukemiaNet (ELN) guidelines. Next to the well-established cytogenetic subgroups and molecular markers such as NPM1, CEBPA, and FLT3, also the screening for RUNX1, TP53, and ASXL1 mutations is now recommended. In the future, a better understanding of the clonal evolution leading to malignant transformation and selection of resistant leukemia clones will not only be crucial for refined determination of measurable residual disease (MRD), but will also result in improved guidance of targeted therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arber DA et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Arends CM et al (2018) Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia

    Google Scholar 

  • Baccin C et al (2020) Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 22(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM et al (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-operative Group. Br J Haematol 33(4):451–458

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM et al (1985a) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103(4):620–625

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM et al (1985b) Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med 103(3):460–462

    Article  CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  • Bullinger L, Dohner K, Dohner H (2017) Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 35(9):934–946

    Article  CAS  PubMed  Google Scholar 

  • Bullinger L, et al (2020) Novel insights into genomic classification and prognosis in acute myeloid leukemia based on a Pan-European public-private partnership, the harmony alliance. EHA Library (294950), p S130

    Google Scholar 

  • Cancer Genome Atlas Research Network et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074

    Article  CAS  Google Scholar 

  • Cocciardi S et al (2019) Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun 10(1):2031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cortes JE et al (2019) Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33(2):379–389

    Article  CAS  PubMed  Google Scholar 

  • Damm F et al (2013) BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood 122(18):3169–3177

    Article  CAS  PubMed  Google Scholar 

  • Damm F et al (2014a) TET2 mutations in cytogenetically normal acute myeloid leukemia: clinical implications and evolutionary patterns. Genes Chromosomes Cancer 53(10):824–832

    Article  CAS  PubMed  Google Scholar 

  • Damm F et al (2014b) Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 4(9):1088–1101

    Article  CAS  PubMed  Google Scholar 

  • Delhommeau F et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360(22):2289–2301

    Article  PubMed  Google Scholar 

  • DiNardo CD et al (2018) Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398

    Article  CAS  PubMed  Google Scholar 

  • Ding L et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152

    Article  PubMed  CAS  Google Scholar 

  • Dohner H et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dufour A et al (2010) Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 28(4):570–577

    Article  CAS  PubMed  Google Scholar 

  • Falini B et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266

    Article  CAS  PubMed  Google Scholar 

  • Falini B et al (2007) Aberrant cytoplasmic expression of C-terminal-truncated NPM leukaemic mutant is dictated by tryptophans loss and a new NES motif. Leukemia 21(9):2052–2054; author reply 2054; discussion 2055-6

    Article  CAS  PubMed  Google Scholar 

  • Federici L, Falini B (2013) Nucleophosmin mutations in acute myeloid leukemia: a tale of protein unfolding and mislocalization. Protein Sci 22(5):545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frick M et al (2019) Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation. J Clin Oncol 37(5):375–385

    Article  CAS  PubMed  Google Scholar 

  • Gaidzik VI et al (2018) DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia 32(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Genovese G et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerstung M et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49(3):332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis NK et al (2017) Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol 18(1):112–121

    Article  PubMed  Google Scholar 

  • Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  CAS  PubMed  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green CL et al (2010) Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol 28(16):2739–2747

    Article  CAS  PubMed  Google Scholar 

  • Green CL et al (2011) The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood 118(2):409–412

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7):2322–2333

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D et al (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98(5):1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Haferlach T et al (2016) The new provisional WHO entity ‘RUNX1 mutated AML’ shows specific genetics but no prognostic influence of dysplasia. Leukemia 30(10):2109–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • He J et al (2016) Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 127(24):3004–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AE et al (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10(7):e1004462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivey A et al (2016) Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374(5):422–433

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaiswal S et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377(2):111–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan M et al (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4(149):149ra118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jongen-Lavrencic M et al (2018) Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378(13):1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Kronke J et al (2011) Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian Acute Myeloid Leukemia Study Group. J Clin Oncol 29(19):2709–2716

    Article  PubMed  Google Scholar 

  • Kronke J et al (2013) Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 122(1):100–108

    Article  PubMed  CAS  Google Scholar 

  • Kuo FC, Dong F (2015) Next-generation sequencing-based panel testing for myeloid neoplasms. Curr Hematol Malig Rep 10(2):104–111

    Article  PubMed  Google Scholar 

  • Kyle RA et al (2018) Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med 378(3):241–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley TJ et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218):66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley TJ et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom MS (2011) NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int 2011:195209

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKerrell T et al (2016) Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood 128(1):e1–e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mead AJ et al (2007) FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 110(4):1262–1270

    Article  CAS  PubMed  Google Scholar 

  • Metzeler KH et al (2016) Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 128(5):686–698

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Wilson RK, Ley TJ (2013) Genomic landscapes and clonality of de novo AML. N Engl J Med 369(15):1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K et al (2018) Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol 36(18):1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrozek K, Heerema NA, Bloomfield CD (2004) Cytogenetics in acute leukemia. Blood Rev 18(2):115–136

    Article  PubMed  Google Scholar 

  • Nagase R et al (2018) Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med 215(6):1729–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaemmanuil E, Dohner H, Campbell PJ (2016a) Genomic classification in acute myeloid leukemia. N Engl J Med 375(9):900–901

    Article  PubMed  Google Scholar 

  • Papaemmanuil E et al (2016b) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschka P et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28(22):3636–3643

    Article  CAS  PubMed  Google Scholar 

  • Patel JP et al (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366(12):1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrino M et al (2018) High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res 28(9):1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploen GG et al (2014) Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol 167(4):478–486

    Article  CAS  PubMed  Google Scholar 

  • Quek L et al (2018) Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med 24(8):1167–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quivoron C et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20(1):25–38

    Article  CAS  PubMed  Google Scholar 

  • Richard-Carpentier G, DiNardo CD (2019) Single-agent and combination biologics in acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2019(1):548–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothenberg-Thurley M et al (2018) Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia 32(7):1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley JD (1973) Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 16(2):109–112

    CAS  PubMed  Google Scholar 

  • Rucker FG et al (2019) Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): results from the AML Study Group. Blood 134(19):1608–1618

    Article  PubMed  Google Scholar 

  • Schmidt M et al (2014) Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 28(12):2292–2299

    Article  CAS  PubMed  Google Scholar 

  • Schuurhuis GJ et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131(12):1275–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlush LI, Hershkovitz D (2015) Clonal evolution models of tumor heterogeneity. Am Soc Clin Oncol Educ Book, e662–e665

    Google Scholar 

  • Shlush LI et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488):328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steensma DP et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126(1):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665

    Article  CAS  PubMed  Google Scholar 

  • Stone RM et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suela J, Alvarez S, Cigudosa JC (2007) DNA profiling by arrayCGH in acute myeloid leukemia and myelodysplastic syndromes. Cytogenet Genome Res 118(2–4):304–309

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18(1):100–111

    Article  PubMed  Google Scholar 

  • Tarlock K, Meshinchi S (2015) Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am 62(1):75–93

    Article  PubMed  Google Scholar 

  • Taskesen E et al (2011) Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117(8):2469–2475

    Article  CAS  PubMed  Google Scholar 

  • Thiede C et al (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107(10):4011–4020

    Article  CAS  PubMed  Google Scholar 

  • Thol F et al (2011) Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29(21):2889–2896

    Article  CAS  PubMed  Google Scholar 

  • Thol F et al (2018) Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132(16):1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100(7):2292–2302

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951

    Article  CAS  PubMed  Google Scholar 

  • Walter MJ et al (2011) Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25(7):1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MJ et al (2012) Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 366(12):1090–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111(5):2505–2515

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Navin NE (2015) Advances and applications of single-cell sequencing technologies. Mol Cell 58(4):598–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K et al (2017) Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 31(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Ward PS et al (2013) The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem 288(6):3804–3815

    Article  CAS  PubMed  Google Scholar 

  • Welch JS et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woll PS et al (2014) Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell 25(6):794–808

    Article  CAS  PubMed  Google Scholar 

  • Wong TN et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518(7540):552–555

    Article  CAS  PubMed  Google Scholar 

  • Wouters BJ et al (2009) Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113(13):3088–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshizato T et al (2015) Somatic mutations and clonal hematopoiesis in aplastic Anemia. N Engl J Med 373(1):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AL et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76(6):1305–1312

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Bullinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noerenberg, D., Damm, F., Bullinger, L. (2021). Genomic Landscape and Clonal Evolution of AML. In: Röllig, C., Ossenkoppele, G.J. (eds) Acute Myeloid Leukemia . Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-72676-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72676-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72675-1

  • Online ISBN: 978-3-030-72676-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics