Skip to main content

Epidemiology and Etiology of AML

Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Acute myeloid leukemia (AML) is a grave disease with an incidence of 4 per 100,000 a year. It can present in all ages, but the median age is 70 years. One-third of such patients have secondary AML, that is, AML following chemoradiotherapy or a transformation from previous myelodysplastic syndrome (MDS) or myeloproliferative neoplasia. A combination of genetic, epigenetic, and environmental factors may be responsible for the development of most cases of AML. The pathogenesis of AML is characterized by the serial acquisition of somatic mutations and several genes are recurrently mutated in AML. Exposures to benzene, cigarette smoking, pesticides, embalming fluids, accidental or professional ionization radiation, therapeutic radiotherapy, and radioactive I-131 therapy can cause AML with or without a preceding MDS phase. Alkylating agents (e.g., melphalan, cyclophosphamide), topoisomerase-II inhibitors (e.g., etoposide, doxorubicin), and other drugs (e.g., azathioprine) are described to be associated with the development of therapy-related AML (t-AML). Furthermore, about 5–15% of adults and 4–13% of pediatric patients with MDS or AML carry germline pathogenic variants in cancer susceptibility genes. Individuals with clonal hematopoiesis (CHIP) progress to AML at a rate of about 1% per year. Higher age of onset, obesity, previous autoimmune disease, and antecedent MDS or MPN are associated with a risk for developing AML.

Keywords

  • Incidence
  • Prevalence
  • Sex
  • Diagnosis
  • Survival
  • Mutations
  • Exposure
  • Hereditary conditions
  • Benzene
  • t-AML
  • Secondary AML

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72676-8_1
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72676-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6

References

  • Abelson S, Collord G, Ng SW et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559(7714):400–404

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Allan JM, Wild CP, Rollinson S et al (2001) Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci U S A 98(20):11592

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    CAS  CrossRef  PubMed  Google Scholar 

  • Babushok DV, Bessler M, Olson TS (2016) Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma 57(3):520–536

    CAS  PubMed  CrossRef  Google Scholar 

  • Bachas C, Schuurhuis GJ, Hollink IH et al (2010) High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood 116(15):2752

    CAS  PubMed  CrossRef  Google Scholar 

  • Bhatnagar UB, Singh D, Glazyrin A, Moormeier J (2016) Paclitaxel induced MDS and AML: a case report and literature review. Case Rep Oncol Med 2016:8308179

    PubMed  PubMed Central  Google Scholar 

  • Bizzozero OJ Jr, Johnson KG, Ciocco A (1966) Radiation-related leukemia in Hiroshima and Nagasaki, 1946–1964. I. Distribution, incidence and appearance time. N Engl J Med 274(20):1095

    PubMed  CrossRef  Google Scholar 

  • Blokzij F, de Ligt J, Jager M et al (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:260–264

    CrossRef  CAS  Google Scholar 

  • Bocker MT, Hellwig I, Breiling A et al (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117(19):e182–e189

    CAS  PubMed  CrossRef  Google Scholar 

  • Boddu PC, Zeidan AM (2019) Myeloid disorders after autoimmune disease. Best Pract Res Clin Haematol 32(1):74–88

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bolton KL, Ptashkin RN, Gao T, et al (2019) Oncologic therapy shapes the fitness landscape of clonal hematopoiesis. https://www.biorxiv.org/content/10.1101/848739v1, https://doi.org/10.1101/848739

  • Brown AL, Churpek JE, Malcovati L et al (2017) Recognition of familial myeloid neoplasia in adults. Semin Hematol 54(2):60–68

    PubMed  CrossRef  Google Scholar 

  • Brunner AM, Graubert TA (2018) Genomics in childhood acute myeloid leukemia comes of age. Nat Med 24(1):7–9. https://doi.org/10.1038/nm.4469

    CAS  CrossRef  PubMed  Google Scholar 

  • Bullinger L, Dohner K, Dohner H (2017) Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 35:934–946

    CAS  PubMed  CrossRef  Google Scholar 

  • Cancer Research UK 2020. https://www.cancerresearchuk.org/

  • Castillo JJ, Reagan JL, Ingham RR et al (2012) Obesity but not overweight increases the incidence and mortality of leukemia in adults: a meta-analysis of prospective cohort studies. Leuk Res 36(7):868–875

    PubMed  CrossRef  Google Scholar 

  • Cerquozzi S, Tefferi A (2015) Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J 5:e366

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chakraborty S, Sun CL, Francisco L et al (2009) Accelerated telomere shortening precedes development of therapy-related myelodysplasia or acute myelogenous leukemia after autologous transplantation for lymphoma. J Clin Oncol 27(5):791

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen X, Pan J, Wang S et al (2019) The epidemiological trend of acute myeloid leukemia in childhood: a population-based analysis. J Cancer 10(20):4824–4845. https://doi.org/10.7150/jca.32326

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cypris O, Božić T, Wagner W (2019) Chicken or egg: is clonal hematopoiesis primarily caused by genetic or epigenetic aberrations? Front Genet 10:785

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dale D, Person R, Bolyard A et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96:2317–2322

    CAS  PubMed  CrossRef  Google Scholar 

  • Daniels RD, Schubauer-Berigan MK (2011) A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation. Occup Environ Med 68:457–464

    CAS  PubMed  CrossRef  Google Scholar 

  • Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24(7):1015–1023

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Deschler B, Lübbert M (2006) Acute myeloid leukemia: epidemiology and etiology. Cancer 107:2099–2107

    PubMed  CrossRef  Google Scholar 

  • DiNardo CD, Ogdie A, Hexner EO et al (2013) Characteristics and outcome of acute myeloid leukemia in patients with a prior history of autoimmune disease. Leuk Lymphoma 54(6):1235–1241

    PubMed  CrossRef  Google Scholar 

  • Dinmohamed AG, Visser O (2019) Incidence of acute promyelocytic leukemia across Europe: results of RARECAREnet—a population-based study. Stem Cell Invest 6:37. https://doi.org/10.21037/sci.2019.10.03

    CrossRef  Google Scholar 

  • Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 73:1136–1152

    CrossRef  CAS  Google Scholar 

  • Ertz-Archambault N, Kosiorek H, Taylor GE et al (2017) Association of therapy for autoimmune disease with myelodysplastic syndromes and acute myeloid leukemia. JAMA Oncol 3(7):936–943

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fircanis S, Merriam P, Khan N, Castillo JJ (2014) The relation between cigarette smoking and risk of acute myeloid leukemia: an updated meta-analysis of epidemiological studies. Am J Hematol 89(8):E125–E132

    PubMed  CrossRef  Google Scholar 

  • Foreman KJ, Marquez N, Dolgert A et al (2018) Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 392:2052–2090

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gao J, Gong S, Chen YH (2019) Myeloid neoplasm with germline predisposition: a 2016 update for pathologists. Arch Pathol Lab Med 143(1):13–22

    PubMed  CrossRef  Google Scholar 

  • Genovese G, Kahler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gillis NK, Ball M, Zhang Q et al (2017) Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol 18(1):112–121

    PubMed  CrossRef  Google Scholar 

  • Godley LA, Shimamura A (2017) Genetic predisposition to hematologic malignancies: management and surveillance. Blood 130(4):424–432

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hauptmann M, Stewart PA, Lubin JH et al (2009) Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst 101(24):1696

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hehlmann R (2012) How I treat CML blast crisis. Blood 120(4):737–747

    CAS  PubMed  CrossRef  Google Scholar 

  • Hernlund E, Redig J, Paulsson B et al (2019) Cost per treatment phase for AML patients receiving high-dose chemotherapy in Sweden. Blood 134(suppl):abstract #2154

    CrossRef  Google Scholar 

  • Hoffman R et al (2018) Chapter 58—Pathobiology of acute myeloid leukemia. In: Hematology, 7th edition basic principles and practice, p 913–923

    Google Scholar 

  • Hulegardh E, Nilsson C, Lazarevic V et al (2015) Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish acute leukemia registry. Am J Hematol 90:208–214

    PubMed  CrossRef  Google Scholar 

  • Iurlo A, Cattaneo D, Gianelli U (2019) Blast transformation in myeloproliferative neoplasms: risk factors, biological findings, and targeted therapeutic options. Int J Mol Sci 20(8):1839

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Jain P, Kantarjian HM, Ghorab A et al (2017) Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: cohort study of 477 patients. Cancer 123(22):4391–4402

    CAS  PubMed  CrossRef  Google Scholar 

  • Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science 366:6465

    CrossRef  CAS  Google Scholar 

  • Jalbut MM, Sohani AR, Dal Cin P et al (2015) Acute myeloid leukemia in a patient with constitutional 47, XXY karyotype. Leuk Res Rep 4(1):28–30

    PubMed  PubMed Central  Google Scholar 

  • Jongmans MC, van der Burgt I, Hoogerbrugge PM et al (2011) Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. Eur J Hum Genet 19(8):870–874

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Juliusson G, Antunovic P, Derolf A et al (2009) Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish acute leukemia registry. Blood 113(18):4179–4187

    CAS  PubMed  CrossRef  Google Scholar 

  • Juliusson G, Abrahamsson J, Lazarevic V et al (2017) Prevalence and characteristics of survivors from acute myeloid leukemia in Sweden. Leukemia 31(3):728–731. https://doi.org/10.1038/leu.2016.312

    CAS  CrossRef  PubMed  Google Scholar 

  • Juliusson G, Hagberg O, Lazarevic V et al (2019) Improved survival of men 50 to 75 years old with acute myeloid leukemia over a 20-year period. Blood 134(18):1558–1561. https://doi.org/10.1182/blood.2019001728

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Juliusson G, Jädersten M, Deneberg S, et al (2020) The prognostic impact of FLT3-ITD and NPM1-mutation in adult AML is age-dependent in the population-based setting. Blood Adv 4(6):1094–1101. https://doi.org/10.1182/bloodadvances.2019001335. PMID: 32203582

  • Kayser S, Dohner K, Krauter J et al (2011) The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 117:2137–2145

    CAS  PubMed  CrossRef  Google Scholar 

  • Kennedy AL, Shimamura A (2019) Genetic predisposition to MDS: clinical features and clonal evolution. Blood 133(10):1071–1085

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Keung YK, Buss D, Chauvenet A et al (2002) Hematologic malignancies and Klinefelter syndrome. A chance association? Cancer Genet Cytogenet 139(1):9–13

    Google Scholar 

  • Klein C (2011) Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol 29:399–413

    CAS  PubMed  CrossRef  Google Scholar 

  • Kostmann R (1956) Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl 45:1–78

    CAS  CrossRef  Google Scholar 

  • Kristinsson SY, Björkholm M, Hultcrantz M et al (2011) Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 29(21):2897–2903

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lazarevic VL, Bredberg A, Lorenz F et al (2018) Acute myeloid leukemia in very old patients. Haematologica 103(12):e578–e580. https://doi.org/10.3324/haematol.2018.196691

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Le Beau MM, Albain KS, Larson RA et al (1986) Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J Clin Oncol 4(3):325

    PubMed  CrossRef  Google Scholar 

  • Lehmann S, Deneberg S, Antunovic P et al (2017) Early death rates remain high in high-risk APL. Update from the Swedish acute leukemia registry 1997-2013. Leukemia 31(6):1457–1459. https://doi.org/10.1038/leu.2017.71

    CAS  CrossRef  PubMed  Google Scholar 

  • Leuraud K, Richardson DB, Cardis E et al (2015) Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2(7):e276–e281

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lewinsohn M, Brown AL, Weinel LM et al (2016) Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 127(8):1017–1023

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lin Y, Zheng Y, Wang ZC, Wang SY (2016) Prognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology 21:454–461

    CAS  PubMed  CrossRef  Google Scholar 

  • Lindsley RC, Mar BG, Mazzola E et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125(9):1367–1376

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lyman GH, Dale DC, Wolff DA et al (2010) Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol 28:2914–2924

    PubMed  CrossRef  Google Scholar 

  • Maynadie M, Girodon F, Manivet-Janoray I et al (2011) Twenty-five years of epidemiological recording on myeloid malignancies: data from the specialized registry of hematologic malignancies of Côte d’Or (Burgundy, France). Haematologica 96(1):55–61. https://doi.org/10.3324/haematol.2010.026252

    CrossRef  PubMed  Google Scholar 

  • Mejia-Ramirez E, Florian MC (2020) Understanding intrinsic hematopoietic stem cells aging. Haemato​logica 105(1):22–37. pii: haematol.2018.211342

    Google Scholar 

  • Mucci LA, Granath F, Cnattingius S (2004) Maternal smoking and childhood leukemia and lymphoma risk among 1,440,542 Swedish children. Cancer Epidemiol Biomark Prev 13:1528–1533

    CAS  Google Scholar 

  • Nardi V, Winkfield KM, Ok CY et al (2012) Acute myeloid leukemia and myelodysplastic syndromes after radiation therapy are similar to denovo disease and differ from other therapy-related myeloid neoplasms. J Clin Oncol 30(19):2340–2347

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nilsson C, et al (2020) Manuscript in preparation

    Google Scholar 

  • NORDCAN (Association of the Nordic Cancer Registries) (2020). http://www-dep.iarc.fr/NORDCAN.htm

  • Ohnishi H, Imataki O, Kawachi Y et al (2014) Age is an independent adverse prognostic factor for overall survival in acute myeloid leukemia in Japan. World J Hematol 3(3):105–114

    CrossRef  Google Scholar 

  • Østgård LSG, Nørgaard JM, Sengeløv H et al (2015) Comorbidity and performance status in acute myeloid leukemia patients: a nation-wide population-based cohort study. Leukemia 29:548–555. https://doi.org/10.1038/leu.2014.234

    CrossRef  PubMed  Google Scholar 

  • Østgård LSG, Nørgaard M, Pedersen L et al (2018) Autoimmune diseases, infections, use of antibiotics and the risk of acute myeloid leukaemia: a national population-based case-control study. Br J Haematol 181(2):205–214

    PubMed  CrossRef  CAS  Google Scholar 

  • Pedersen-Bjergaard J, Philip P (1991) Two different classes of therapy-related and de-novo acute myeloid leukemia? Cancer Genet Cytogenet 55(1):119–124

    CAS  PubMed  CrossRef  Google Scholar 

  • Polednak AP (2014) Recent improvement in completeness of incidence data on acute myeloid leukemia in US cancer registries. J Registry Manag 41(2):77–84

    PubMed  Google Scholar 

  • Poynter JN, Richardson M, Blair CK et al (2016) Obesity over the life course and risk of acute myeloid leukemia and myelodysplastic syndromes. Cancer Epidemiol 40:134–140

    PubMed  CrossRef  Google Scholar 

  • Reilly JT (2005) Pathogenesis of acute myeloid leukaemia and inv(16)(p13;q22): a paradigm for understanding leukaemogenesis? Br J Haematol 128(1):18–34

    CAS  PubMed  CrossRef  Google Scholar 

  • Roman E, Smith A, Appleton S et al (2016) Myeloid malignancies in the real-world: occurrence, progression and survival in the UK’s population-based Haematological Malignancy Research Network 2004-15. Cancer Epidemiol 42:186–198

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rose D, Haferlach T, Schnittger S et al (2017) Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia 31:11–17

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosenberg P, Zeidler C, Bolyard A et al (2010) Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol 150:196–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sallman DA, Komrokji R, Cluzeau T et al (2017) ASXL1 frameshift mutations drive inferior outcomes in CMML without negative impact in MDS. Blood Cancer J 7:633

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schanz J, Cevik N, Fonatsch C et al (2018) Detailed analysis of clonal evolution and cytogenetic evolution patterns in patients with myelodysplastic syndromes (MDS) and related myeloid disorders. Blood Cancer J 8(3):28

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schnegg-Kaufmann A, Feller A, Baldomero H et al (2018) Improvement of relative survival in elderly patients with acute myeloid leukaemia emerging from population-based cancer registries in Switzerland between 2001 and 2013. Cancer Epidemiol 52:55–62. https://doi.org/10.1016/j.canep.2017.11.008

    CrossRef  PubMed  Google Scholar 

  • Schroeder T, Kuendgen A, Kayser S et al (2012) Therapy-related myeloid neoplasms following treatment with radioiodine. Haematologica 97(2):206–212

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sébert M, Passet M, Raimbault A et al (2019) Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 134(17):1441–1444

    PubMed  CrossRef  Google Scholar 

  • Seedhouse C, Russell N (2007) Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br J Haematol 137(6):513

    CAS  PubMed  CrossRef  Google Scholar 

  • SEER (2020) Cancer statistics review 1975-2016. https://seer.cancer.gov/csr/1975_2016/browse_csr.php?sectionSEL=13&pageSEL=sect_13_table.08

  • Seiter K, Qureshi A, Liu D et al (2005) Severe toxicity following induction chemotherapy for acute myelogenous leukemia in a patient with Werner’s syndrome. Leuk Lymphoma 46(7):1091–1095

    PubMed  CrossRef  Google Scholar 

  • Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM (2019) Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev 36:70–87. https://doi.org/10.1016/j.blre.2019.04.005

    CrossRef  PubMed  Google Scholar 

  • Shand JC (2017) Looking up for AML in Down syndrome. Blood 129(25):3273–3274

    CAS  PubMed  CrossRef  Google Scholar 

  • Shlush LI (2018) Age-related clonal hematopoiesis. Blood 131(5):496–504

    CAS  PubMed  CrossRef  Google Scholar 

  • Snyder R (2012) Leukemia and benzene. Int J Environ Res Public Health 9:2875–2893

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sperling AS, Gibson CJ, Ebert BL (2017) The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer 17:5–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Steensma DP (2018) Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology 2(22):3404–3410

    CAS  Google Scholar 

  • Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stone RM, Neuberg D, Soiffer R et al (1994) Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 12(12):2535

    CAS  PubMed  CrossRef  Google Scholar 

  • Swaminathan M, Bannon SA, Routbort M et al (2019) Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb Mol Case Stud 5(1):a003210

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research and Cancer, Lyon

    Google Scholar 

  • Takahashi K, Wang F, Kantarjian H et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18(1):100–111

    PubMed  CrossRef  Google Scholar 

  • Tawana K, Wang J, Renneville A et al (2015) Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126(10):1214–1223

    CAS  PubMed  CrossRef  Google Scholar 

  • Tesi B, Davidsson J, Voss M et al (2017) Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood 129(16):2266–2279

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Theocharides A, Boissinot M, Girodon F et al (2007) Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 110:375–379

    CAS  PubMed  CrossRef  Google Scholar 

  • Thirman MJ, Gill HJ, Burnett RC et al (1993) Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med 329(13):909

    CAS  PubMed  CrossRef  Google Scholar 

  • Valdez JM, Nichols KE, Kesserwan C (2017) Li-Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition. Br J Haematol 176(4):539–552

    PubMed  CrossRef  Google Scholar 

  • Valent P, Kern W, Hoermann G et al (2019) Clonal hematopoiesis with oncogenic potential (CHOP): separation from CHIP and roads to AML. Int J Mol Sci 20(3):789

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Van Maele-Fabry G, Gamet-Payrastre L, Lison D (2019) Household exposure to pesticides and risk of leukemia in children and adolescents: updated systematic review and meta-analysis. Int J Hyg Environ Health 222(1):49–67

    PubMed  CrossRef  CAS  Google Scholar 

  • Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilson DB, Link DC, Mason PJ, Bessler M (2014) Inherited bone marrow failure syndromes in adolescents and young adults. Ann Med 46(6):353–363

    PubMed  CrossRef  Google Scholar 

  • Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518(7540):552–555

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoshinaga S, Mabuchi K, Sigurdson AJ et al (2004) Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology 233:313–321

    PubMed  CrossRef  Google Scholar 

  • Zhu J, Wang H, Yang S et al (2013) Comparison of toxicity of benzene metabolite hydroquinone in hematopoietic stem cells derived from murine embryonic yolk sac and adult bone marrow. PLoS One 8(8):e71153

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Juliusson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Juliusson, G., Lehmann, S., Lazarevic, V. (2021). Epidemiology and Etiology of AML. In: Röllig, C., Ossenkoppele, G.J. (eds) Acute Myeloid Leukemia . Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-72676-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72676-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72675-1

  • Online ISBN: 978-3-030-72676-8

  • eBook Packages: MedicineMedicine (R0)