Banerji, M., Lahav, O., Lintott, C. J., Abdalla, F. B., Schawinski, K., Bamford, S. P., Andreescu, D., Murray, P., Raddick, M. J., & Slosar, A. (2014). Galaxy Zoo: Reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronomical Society, 406(1), 342–353.
CrossRef
Google Scholar
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127.
CrossRef
Google Scholar
Betzel, R. F., Avena-Koenigsberger, A., Goñi, J., He, Y., de Reus, M. A., Griffa, A., Vértes, P. E., Mišic, B., Thiran, J. P., Hagmann, P., van den Heuvel, M., Zuo, X. N., Bullmore, E. T., & Sporns, O. (2016). Generative models of the human connectome. NeuroImage, 124, 1054–1064.
CrossRef
Google Scholar
Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.
CrossRef
Google Scholar
Clark, A. (2013a). Expecting the world: Perception, prediction, and the origins of human knowledge. The Journal of Philosophy, 110(9), 469–496.
CrossRef
Google Scholar
Clark, A. (2013b). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–253.
CrossRef
Google Scholar
Clark, A. (2016). Surfing uncertainty: Prediction, action and the embodied mind. New York: Oxford University Press.
CrossRef
Google Scholar
Committee on the Analysis of Massive Data. (2013). Frontiers in massive data analysis. Washington, DC: The National Academies Press.
Google Scholar
Damasio, A. R. (1996). Descartes’ error: Emotion, reason and the human brain. London: Papermac.
Google Scholar
Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), 64–73.
CrossRef
Google Scholar
Dieleman, S., Willett, K. W., & Dambre, J. (2015). Rotation-invariant convolutional neural networks for galaxy morphology prediction. Monthly Notices of the Royal Astronomical Society, 450(2), 1441–1459.
CrossRef
Google Scholar
Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303.
CrossRef
Google Scholar
Fawcett, T. (2015). Mining the quantified self: Personal knowledge discovery as a challenge for data science. Big Data, 3(4), 249–266.
CrossRef
Google Scholar
Foroughi, J., Mitew, T., Ogunbona, P., Raad, R., & Safaei, F. (2016). Smart fabrics and networked clothing: Recent developments in CNT-based fibers and their continual refinement. IEEE Consumer Electronics Magazine, 5(4), 105–111.
CrossRef
Google Scholar
Friston, K. (2002). Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience, 25(1), 221–250.
CrossRef
Google Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
CrossRef
Google Scholar
Friston, K., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room problem. Frontiers in Psychology, 3(130), 1–7.
Google Scholar
Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148–158.
CrossRef
Google Scholar
Gerrans, P. (2015). All the self we need. In T. K. Metzinger & J. M. Windt (Eds.), Open MIND: Philosophy and the mind sciences in the 21st century (pp. 1–19). Frankfurt am Main: MIND Group.
Google Scholar
Goertzel, B., & Ikle’, M. (2012). Special issue on mind uploading: Introduction. International Journal of Machine Consciousness, 4(1), 1–3.
CrossRef
Google Scholar
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger (Eds.), Advances in neural information processing systems, Montreal, Canada (Vol. 27, pp. 2672–2680).
Google Scholar
Hayworth, K. J. (2012). Electron imaging technology for whole brain neural circuit mapping. International Journal of Machine Consciousness, 4(1), 87–108.
CrossRef
Google Scholar
Hinton, G. E. (2007a). Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10), 428–434.
CrossRef
Google Scholar
Hinton, G. E. (2007b). To recognize shapes, first learn to generate images. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Theoretical insights into brain function (Vol. 165, pp. 535–547). Amsterdam: Elsevier.
CrossRef
Google Scholar
Hinton, G. E. (2010). Learning to represent visual input. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1537), 177–184.
CrossRef
Google Scholar
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
CrossRef
Google Scholar
Hohwy, J., & Michael, J. (2017). Why should any body have a self? In F. de Vignemont & A. J. T. Alsmith (Eds.), The subject’s matter: Self-consciousness and the body (pp. 363–391). Cambridge, MA: MIT Press.
Google Scholar
Hoogendoorn, M., & Funk, B. (2018). Machine learning for the quantified self. Cham: Springer.
CrossRef
Google Scholar
Horn, B. K. P. (1977). Understanding image intensities. Artificial Intelligence, 8(2), 201–231.
CrossRef
Google Scholar
Kugler, L. (2015). Touching the virtual. Communications of the ACM, 58(8), 16–18.
CrossRef
Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
CrossRef
Google Scholar
Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M. J., Nichol, R. C., Szalay, A., Andreescu, D., Murray, P., & van den Berg, J. (2008). Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 389(3), 1179–1189.
CrossRef
Google Scholar
Lupton, D. (2013). Understanding the human machine. IEEE Technology and Society Magazine, 32(4), 25–30.
CrossRef
Google Scholar
Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., & Svetnik, V. (2015). Deep neural nets as a method for quantitative structure – activity relationships. Journal of Chemical Information and Modeling, 55(2), 263–274.
Google Scholar
Metzinger, T. (2003). Being no one: The self-model theory of subjectivity. Cambridge, MA: MIT Press.
CrossRef
Google Scholar
Mitteroecker, P., & Huttegger, S. M. (2009). The concept of morphospaces in evolutionary and developmental biology: Mathematics and metaphors. Biological Theory, 4(1), 54–67.
CrossRef
Google Scholar
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21.
CrossRef
Google Scholar
Phan, N., Dou, D., Wang, H., Kil, D., & Piniewski, B. (2017). Ontology-based deep learning for human behavior prediction in health social networks. Information Sciences, 384, 298–313.
CrossRef
Google Scholar
Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., Schneider, J. G., & Poczos, B. (2017). Enabling dark energy science with deep generative models of galaxy images. In S. Singh & S. Markovitch (Eds.), Thirty-first AAAI conference on artificial intelligence (pp. 1488–1494). San Francisco: AAAI Press.
Google Scholar
Revonsuo, A. (1995). Consciousness, dreams and virtual realities. Philosophical Psychology, 8(1), 35–58.
CrossRef
Google Scholar
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573.
CrossRef
Google Scholar
Seung, H. S. (2012). Connectome: How the brain’s wiring makes us who we are. New York: Houghton Mifflin Harcourt Publishing Company.
Google Scholar
Smalley, D., Poon, T.-C., Gao, H., Kvavle, J., & Qaderi, K. (2018). Volumetric displays: Turning 3-D inside-out. Optics and Photonics News, 29(6), 26–33.
CrossRef
Google Scholar
Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., & Sakurai, T. (2004). A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences, 101(27), 9966–9970.
CrossRef
Google Scholar
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.
CrossRef
Google Scholar
Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. Big Data, 1(2), 85–99.
CrossRef
Google Scholar
van Gerven, M. A., de Lange, F. P., & Heskes, T. (2010). Neural decoding with hierarchical generative models. Neural Computation, 22(12), 3127–3142.
CrossRef
Google Scholar
Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., Wang, K., Wu, D., & Zhu, H. (2014). Wearable and highly sensitive graphene strain sensors for human motion monitoring. Advanced Functional Materials, 24(29), 4666–4670.
CrossRef
Google Scholar
Wheeler, M. (2013). What matters: Real bodies and virtual worlds. In I. Harvey, A. Cavoukian, G. Tomko, D. Borrett, H. Kwan, & D. Hatzinakos (Eds.), SmartData: Privacy meets evolutionary robotics (pp. 69–80). New York: Springer.
CrossRef
Google Scholar
Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., & Someya, T. (2016). Ultraflexible organic photonic skin. Science Advances, 2(4), e1501856.
CrossRef
Google Scholar
Young, A. W., & Leafhead, K. M. (1996). Betwixt life and death: Case studies of the Cotard delusion. In P. W. Halligan & J. C. Marshall (Eds.), Method in madness: Case studies in cognitive neuropsychiatry (pp. 147–171). New York: Psychology Press Ltd.
Google Scholar