Skip to main content

A General Framework for Studying Certain Generalized Topologically Open Sets in Relator Spaces

  • Chapter
  • First Online:
Nonlinear Analysis, Differential Equations, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 173))

Abstract

A family \(\mathcal {R}\) of binary relations on a set X is called a relator on X, and the ordered pair \( X(\mathcal {R})=( X, \mathcal {R})\) is called a relator space. Sometimes relators on X to Y  are also considered.

By using an obvious definition of the generated open sets, each generalized topology \(\mathcal {T}\) on X can be easily derived from the family of all Pervin’s preorder relations R V = V 2 ∪ V c  × X with \(V\in \mathcal {T}\), where \(V^{2}={}V\!\times \!V\) and V c = X ∖ V .

For a subset A of the relator space \(X(\mathcal {R})\), we define

$$\displaystyle A^{\circ }= \operatorname {\mathrm {int}}_{ {\mathcal {R}}}(A)= \big \{x\in X: \ \ \ \exists \ R\in \mathcal {R}: \,\ \ R\,(x)\subseteq {}A\,\big \} $$

and . And, for instance, we write if A ⊆ A .

Moreover, following some basic definitions in topological spaces, for a subset A of the relator space \(X(\mathcal {R})\) we write

The members of the above families will be called the topologically regular open, preopen, semi-open, α-open, β-open, a-open and b-open subsets of the relator space \(X(\mathcal {R})\), respectively.

In our former papers, having in mind the original definitions of N. Levine [49] and H. H. Corson and E. Michael [11], we have also investigated four further, closely related, families of generalized topologically open sets in \(X(\mathcal {R})\).

Now, we shall offer a general framework for studying these families. Moreover, motivated by a definition of Á. Császár [15] and his predecessors, we shall also consider a further important class of generalized topologically open sets.

For the latter purpose, for a subset A of the relator space \(X(\mathcal {R})\), we shall write

  1. (8)

     if  A − ∘⊆ A ∘ −.

Thus, according to Császár’s terminology, the members of the family should be called the topologically quasi-open subsets of the relator space \(X(\mathcal {R})\). However, in the earlier literature, these sets have been studied under different names.

While, for the former purpose, for any two subsets A and B of the relator space \(X(\mathcal {R})\) we shall write

  1. (9)

    and  if  A ⊆ B ⊆ A .

Moreover, for a family \(\mathcal {A}\) of subsets of \(X(\mathcal {R})\) we shall define

  1. (10)

     and  .

Thus, \(\mathcal {A}^{\hskip 1mm\ell }\) and \(\mathcal {A}^{{\hskip 1mm}u}\) may be called the lower and upper nearness closures of \(\mathcal {A}\), respectively. Namely, if , then we may naturally say that A is near to B from below and B is near to A from above.

The most important particular cases are when \(\mathcal {A}\) is a minimal structure or a generalized topology on X. Or even more specially, \(\mathcal {A}\) is one of the families , or .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings. Bull. Fac. Sci. Assiut Univ. 12, 77–90 (1983)

    Google Scholar 

  2. P. Alexandroff, Zur Begründung der n-dimensionalen mengentheorischen Topologie. Math. Ann. 94, 296–308 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Andrijević, Semi-preopen sets. Mat. Vesnik 38, 24–32 (1986)

    MathSciNet  MATH  Google Scholar 

  4. D. Andrijević, On b-open sets. Mat. Vesnik 48, 59–64 (1996)

    MathSciNet  MATH  Google Scholar 

  5. N. Biswas, On some mappings in topological spaces. Bull. Cal. Math. Soc. 61, 127–135 (1969)

    MathSciNet  MATH  Google Scholar 

  6. N. Bourbaki, General Topology, Chapters 1–4 (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  7. T.A. Chapman, A further note on closure and interior operators. Am. Math. Monthly 69, 524–529 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ch. Chattopadhyay, Ch. Bandyopadhyay, On structure of δ-sets. Bull. Calcutta Math. Soc. 83, 281–290 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Ch. Chattopadhyay, U.K. Roy, δ-sets, irresolvable and resolvable spaces. Math. Slovaca 42, 371–378 (1992)

    Google Scholar 

  10. H. Choda, K. Matoba, On a theorem of Levine. Proc. Jpn. Acad. 37, 462–463 (1961)

    MATH  Google Scholar 

  11. H.H. Corson, E. Michael, Metrizability of countable unions. Ill. J. Math. 8, 351–360 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Á. Császár, Foundations of General Topology (Pergamon Press, London, 1963)

    MATH  Google Scholar 

  13. Á. Császár, Generalized open sets. Acta Math. Hungar. 75, 65–87 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Á. Császár, On the γ-interior and γ-closure of a set. Acta Math. Hungar. 80, 89–93 (1998)

    Article  MathSciNet  Google Scholar 

  15. Á. Császár, γ-quasi-open sets. Stud. Sci. Math. Hungar. 38, 171–176 (2001)

    Google Scholar 

  16. Á. Császár, Remarks on γ-quasi-open sets. Stud. Sci. Math. Hungar. 39, 137–141 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Á. Császár, Further remarks on the formula for the γ-interior. Acta Math. Hungar. 113, 325–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Á. Császár, Remarks on quasi-topologies. Acta Math. Hungar. 119, 197–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. B.A. Davey, H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  20. A.S. Davis, Indexed systems of neighbordoods for general topological spaces. Am. Math. Monthly 68, 886–893 (1961)

    Article  MATH  Google Scholar 

  21. K. Dlaska, N. Ergun, M. Ganster, On the topology generated by semi-regular sets. Indian J. Pure Appl. Math. 25, 1163–1170 (1994)

    MathSciNet  MATH  Google Scholar 

  22. J. Dontchev, Survey on preopen sets. Meetings on Topological Spaces, Theory and Applications, Yatsushiro College of Technology, Kumamoto, Japan (1998), 18 pp.

    Google Scholar 

  23. Z. Duszyński, T. Noiri, Semi-open, semi-closed sets and semi-continuity of functions. Math. Pannon. 23, 195–200 (2012)

    MathSciNet  MATH  Google Scholar 

  24. V.A. Efremovič, The geometry of proximity. Mat. Sb. 31, 189–200 (1952) (Russian)

    MathSciNet  Google Scholar 

  25. V.A. Efremović, A.S. Švarc, A new definition of uniform spaces. Metrization of proximity spaces. Dokl. Acad. Nauk. SSSR 89, 393–396 (1953) (Russian)

    Google Scholar 

  26. N. Elez, O. Papaz, The new operators in topological spaces. Math. Moravica 17, 63–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces (Marcel Dekker, New York, 1982)

    MATH  Google Scholar 

  28. M. Ganster, Preopen sets and resolvable spaces. Kyungpook J. 27, 135–143 (1987)

    MathSciNet  MATH  Google Scholar 

  29. M. Ganster, I.L. Reilly, M.K. Vamanamurthy, Remarks on locally closed sets. Math. Pannon. 3, 107–113 (1992)

    MathSciNet  MATH  Google Scholar 

  30. B. Ganter, R. Wille, Formal Concept Analysis (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  31. R. Gargouri, A. Rezgui, A unification of weakening of open and closed subsets in a topological spaces. Bull. Malays. Math. Sci. Soc. 40, 1219–1230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Givant, P. Halmos, Introduction to Boolean Algebras (Springer, Berlin, 2009)

    MATH  Google Scholar 

  33. T. Glavosits, Generated preorders and equivalences. Acta Acad. Paed. Agrienses, Sect. Math. 29, 95–103 (2002)

    Google Scholar 

  34. W.H. Gottschalk, Intersection and closure. Proc. Am. Math. Soc. 4, 470–473 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Hunsaker, W. Lindgren, Construction of quasi-uniformities. Math. Ann. 188, 39–42 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. D.H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Isomichi, New concept in the theory of topological spaces–Supercondensed set, subcondensed set, and condensed set. Pac. J. Math. 38, 657–668 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y.B. Jun, S.W. Jeong, H.j. Lee, J.W. Lee, Applications of pre-open sets. Appl. Gen. Top. 9, 213–228 (2008)

    Google Scholar 

  39. S.-M. Jung, Interiors and closure of sets and applications. Int. J. Pure Math. 3, 41–45 (2016)

    Google Scholar 

  40. S.-M. Jung, D. Nam, Some properties of interior and closure in general topology. Mathematics 7, 624 (2019)

    Article  Google Scholar 

  41. J.L. Kelley, General Topology (Van Nostrand Reinhold Company, New York, 1955)

    MATH  Google Scholar 

  42. H. Kenyon, Two theorems on relations. Trans. Am. Math. Soc. 107, 1–9 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. V.L. Kljushin, Al bayati J.H. Hussein, On simply-open sets. Vestnik UDC 3, 34–38 (2011). (Russian)

    Google Scholar 

  44. K. Kuratowski, Sur l’opération \(\overline {A}\) de l’analysis situs. Fund. Math. 3(1922), 182–199 (1922) (An English translation: On the operation \(\overline {A}\) in analysis situs, prepared by M. Bowron in 2010, is available on the Internet)

    Google Scholar 

  45. K. Kuratowski, Topology I (Academic Press, New York, 1966)

    MATH  Google Scholar 

  46. J. Kurdics, A note on connection properties. Acta Math. Acad. Paedagog. Nyházi. 12, 57–59 (1990)

    MATH  Google Scholar 

  47. J. Kurdics, Á. Száz, Well-chainedness characterizations of connected relators. Math. Pannon. 4, 37–45 (1993)

    MathSciNet  MATH  Google Scholar 

  48. N. Levine, On the commutivity of the closure and interior operators in topological spaces. Am. Math. Montly 68, 474–477 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Levine, Semi-open sets and semi-continuity in topological spaces. Am. Math. Monthly 70, 36–41 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  50. N. Levine, Some remarks on the closure operator in topological spaces. Am. Math. Monthly 70, 553 (1963)

    Article  MATH  Google Scholar 

  51. N. Levine, On uniformities generated by equivalence relations. Rend. Circ. Mat. Palermo 18, 62–70 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  52. N. Levine, On Pervin’s quasi uniformity. Math. J. Okayama Univ. 14, 97–102 (1970)

    MathSciNet  MATH  Google Scholar 

  53. J. Mala, Relators generating the same generalized topology. Acta Math. Hungar. 60, 291–297 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Mala, Á. Száz, Properly topologically conjugated relators. Pure Math. Appl. Ser. B 3, 119–136 (1992)

    MathSciNet  MATH  Google Scholar 

  55. J. Mala, Á. Száz, Modifications of relators. Acta Math. Hungar. 77, 69–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt 53, 47–53 (1982)

    MathSciNet  MATH  Google Scholar 

  57. S.A. Naimpally, B.D. Warrack, Proximity Spaces (Cambridge University Press, Cambridge, 1970)

    MATH  Google Scholar 

  58. H. Nakano, K. Nakano, Connector theory. Pac. J. Math. 56, 195–213 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  59. A.A. Nasef, R. Mareay, More on simplly open sets and its applications. South Asian J. Math. 5, 100–108. (2015)

    Google Scholar 

  60. A.A. Nasef, R. Mareay, Ideals and some applications of simply open sets. J. Adv. Math. 13, 7264–7271 (2017)

    Article  Google Scholar 

  61. A. Neubrunnová, On transfinite sequences of certain types of functions. Acta Fac. Rer. Natur. Univ. Commun. Math. 30, 121–126 (1975)

    MathSciNet  MATH  Google Scholar 

  62. O. Njåstad, On some classes of nearly open sets. Pac. J. Math. 15, 195–213 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  63. G. Pataki, Supplementary notes to the theory of simple relators. Radovi Mat. 9, 101–118 (1999)

    MathSciNet  MATH  Google Scholar 

  64. G. Pataki, On the extensions, refinements and modifications of relators. Math. Balk. 15, 155–186 (2001)

    MathSciNet  MATH  Google Scholar 

  65. G. Pataki, Á. Száz, A unified treatment of well-chainedness and connectedness properties. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 19, 101–165 (2003)

    Google Scholar 

  66. W.J. Pervin, Quasi-uniformization of topological spaces. Math. Ann. 147, 316–317 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  67. Th.M. Rassias, M. Salih, Á. Száz, Characterizations of generalized topologically open sets in relator spaces, in Recent Trends on Pure and Applied Mathematics, Special Issue of the Montes Taurus, ed. by G.V. Milovanovic, Thm. M. Rassias, Y. Simsek. J. Pure Appl. Math., Dedicated to Professor Hari Mohan Srivastava on the occasion of his 80th Birthday, Montes Taurus J. Pure Appl. Math. 3, 39–94 (2021)

    Google Scholar 

  68. Th.M. Rassias, M. Salih, Á. Száz, Set-theoretic properties of generalized topologically open sets in relator spaces, in Mathematical Analysis in Interdisciplinary Research, ed. by I.N. Parasidis, E. Providas, Th.M. Rassias, to appear

    Google Scholar 

  69. M. Salih, Á. Száz, Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces. Electron. Res. Arch. 28, 471–548 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Sivagami, Remarks on γ-interior. Acta Math. Hungar. 119, 81–94 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yu.M. Smirnov, On proximity spaces. Math. Sb. 31, 543–574 (1952) (Russian)

    MATH  Google Scholar 

  72. M.H. Stone, Application of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. 41, 374–481 (1937)

    Article  MathSciNet  Google Scholar 

  73. Á. Száz, Basic tools and mild continuities in relator spaces. Acta Math. Hungar. 50, 177–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  74. Á. Száz, Directed, topological and transitive relators. Publ. Math. Debrecen 35, 179–196 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  75. Á. Száz, Relators, Nets and Integrals. Unfinished doctoral thesis, Debrecen (1991), 126 pp.

    Google Scholar 

  76. Á. Száz, Structures derivable from relators. Singularité 3, 14–30 (1992)

    Google Scholar 

  77. Á. Száz, Refinements of relators. Tech. Rep., Inst. Math., Univ. Debrecen, vol. 76 (1993), 19 pp.

    Google Scholar 

  78. Á. Száz, Cauchy nets and completeness in relator spaces. Colloq. Math. Soc. János Bolyai 55, 479–489 (1993)

    MathSciNet  MATH  Google Scholar 

  79. Á. Száz, Neighbourhood relators. Bolyai Soc. Math. Stud. 4, 449–465 (1995)

    MathSciNet  MATH  Google Scholar 

  80. Á. Száz, Uniformly, proximally and topologically compact relators. Math. Pannon. 8, 103–116 (1997)

    MathSciNet  MATH  Google Scholar 

  81. Á. Száz, Somewhat continuity in a unified framework for continuities of relations. Tatra Mt. Math. Publ. 24, 41–56 (2002)

    MathSciNet  MATH  Google Scholar 

  82. Á. Száz, Upper and lower bounds in relator spaces. Serdica Math. J. 29, 239–270 (2003)

    MathSciNet  Google Scholar 

  83. Á. Száz, Rare and meager sets in relator spaces. Tatra Mt. Math. Publ. 28, 75–95 (2004)

    MathSciNet  MATH  Google Scholar 

  84. Á. Száz, Galois-type connections on power sets and their applications to relators. Tech. Rep., Inst. Math., Univ. Debrecen 2005/2 (2005), 38 pp.

    Google Scholar 

  85. Á. Száz, Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities. Filomat 21, 87–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. Á. Száz, Galois type connections and closure operations on preordered sets. Acta Math. Univ. Comenian. (N.S.) 78, 1–21 (2009)

    Google Scholar 

  87. Á. Száz, Inclusions for compositions and box products of relations. J. Int. Math. Virt. Inst. 3, 97–125 (2013)

    MathSciNet  MATH  Google Scholar 

  88. Á. Száz, A particular Galois connection between relations and set functions. Acta Univ. Sapientiae, Math. 6, 73–91 (2014)

    Google Scholar 

  89. Á. Száz, Generalizations of Galois and Pataki connections to relator spaces. J. Int. Math. Virtual Inst. 4, 43–75 (2014)

    MathSciNet  MATH  Google Scholar 

  90. Á. Száz, Basic tools, increasing functions, and closure operations in generalized ordered sets, in Contributions in Mathematics and Engineering, ed. by P.M. Pardalos, Th.M. Rassias. In Honor of Constantion Caratheodory (Springer, Berlin, 2016), pp. 551–616

    Google Scholar 

  91. Á. Száz, Four general continuity properties, for pairs of functions, relations and relators, whose particular cases could be investigated by hundreds of mathematicians. Tech. Rep., Inst. Math., Univ. Debrecen, 2017/1 (2017), 17 pp.

    Google Scholar 

  92. Á. Száz, The closure-interior Galois connection and its applications to relational equations and inclusions. J. Int. Math. Virt. Inst. 8, 181–224 (2018)

    Google Scholar 

  93. Á. Száz, Corelations are more powerful tools than relations, in Applications of Nonlinear Analysis, ed. by Th.M. Rassias. Optimization and Its Applications, vol. 134 (Springer, Berlin, 2018), pp. 711–779

    Google Scholar 

  94. Á. Száz, Relationships between inclusions for relations and inequalities for corelations. Math. Pannon. 26, 15–31 (2018)

    MathSciNet  MATH  Google Scholar 

  95. Á. Száz, Galois and Pataki connections on generalized ordered sets. Earthline J. Math. Sci. 2, 283–323 (2019)

    Article  Google Scholar 

  96. Á. Száz, Birelator spaces are natural generalizations of not only bitopological spaces, but also ideal topological spaces, in Mathematical Analysis and Applications, Springer Optimization and Its Applications, ed. by Th.M. Rassias, P.M. Pardalos, vol. 154 (Springer, Switzerland, 2019), pp. 543–586

    Google Scholar 

  97. W.J. Thron, Topological Structures (Holt, Rinehart and Winston, New York, 1966)

    Google Scholar 

  98. H. Tietze, Beiträge zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des Umgebungsbegriffs. Math. Ann. 88, 290–312 (1923)

    Google Scholar 

  99. A. Weil, Sur les espaces á structure uniforme et sur la topologie générale. Actual. Sci. Ind., vol. 551 (Herman and Cie, Paris 1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Árpád Száz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rassias, T.M., Száz, Á. (2021). A General Framework for Studying Certain Generalized Topologically Open Sets in Relator Spaces. In: Rassias, T.M. (eds) Nonlinear Analysis, Differential Equations, and Applications. Springer Optimization and Its Applications, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-72563-1_19

Download citation

Publish with us

Policies and ethics