Skip to main content

The Role of Differential Equations in Applied Statistics

  • Chapter
  • First Online:
Nonlinear Analysis, Differential Equations, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 173))

  • 1560 Accesses

Abstract

The target of this paper is to discuss, investigate and present how the differential equations are applied in Statistics. The stochastic orientation of Statistics creates problems to adopt the differential equations as an individual tool, but Applied Statistics is using the differential equations either through applications from other fields, like Chemistry or as a tool to explain “variation” in stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.I. Amari, Differential Geometrical Methods in Statistics (Springer, Berlin, 2012)

    MATH  Google Scholar 

  2. A.C. Atkinson, K. Chaloner, A.M. Herzberg, J. Juritz, Optimum experimental designs for properties of a compartmental model. Biometrics 49(2), 325–337 (1993)

    Article  MATH  Google Scholar 

  3. Y. Bard, Nonlinear Parameter Estimation (Academic Press, New York, 1974)

    MATH  Google Scholar 

  4. M.D. Bates, G.D. Watts, Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1988)

    Book  MATH  Google Scholar 

  5. B.R. Bhat, Modern Probability Theory (Wiley, New Delhi, 1985)

    MATH  Google Scholar 

  6. G.E.P. Box, H.L. Lucas, Design of experiments in Nonlinear situation. Biometrika 49, 77–90 (1959)

    Article  MATH  Google Scholar 

  7. G.E.P. Box, W.G. Hunter, The experimental study of physical mechanisms, Technometrics 7, 23–42 (1965)

    Article  Google Scholar 

  8. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  Google Scholar 

  9. N.L. Carr, Kinetics of catalytic isomerisation of n-pentane. Indus. Eng. Chem. 52(5), 391–396 1960

    Article  Google Scholar 

  10. M. Davis, P.J.E. Peebles, On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe. Astrophys. J. Suppl. Ser. 34, 425–50 (1977)

    Article  MathSciNet  Google Scholar 

  11. M.E. Davis, R.J. Davis, Fundamentals of Chemical Reaction Engineering, 1st edn. (McGraw Hill, New York, 2003), 368 pp.

    Google Scholar 

  12. C.T. De Wit, Resource use efficiency in agriculture. Agric. Syst. 40(1–3), 125–151 (1992)

    Article  Google Scholar 

  13. J. Downie, K.A. Shelstad, W.F. Graydon, Kinetics of the vapour-phase oxidation of toluene over a vanadium catalyst. Can. J. Chem. Eng. 39(5), 201–204 (1961)

    Article  Google Scholar 

  14. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1968)

    MATH  Google Scholar 

  15. R.A. Fisher, On the Mathematical Foundations of Theoretical Statistics. Philos. Trans. R. Soc. Lond. Ser. A, 222, 309–368 (1922)

    Article  MATH  Google Scholar 

  16. I. Ford, C.P. Kitsos, D.M. Titterington, Recent advances in nonlinear experimental design. Technometrics 31(1), 49–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. C.E. Fröberg, Numerical Mathematics: Theory and Computer Applications (Benjamin-Cummings, San Francisco, 1985)

    MATH  Google Scholar 

  18. A.F. Graybill, Theory and Application of the Linear Model (Duxbury Press, 1976)

    Google Scholar 

  19. K. Harmsen, A modified Mitscherlich equation for rainfed crop production in semi-arid areas: 1. Theory. Neth. J. Agric. Sci. 48(3), 237–250 (2000)

    Google Scholar 

  20. P.D.H. Hill, D-optimal Designs for partially Nonlinear Regression Models. Technometrics 22, 275–276 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.H. Hosten, G.F. Froment, Isomerization of n-pentane. Ind. Eng. Chem. Process. Des. Dev. 10(2), 280–287 (1971)

    Article  Google Scholar 

  22. I.S. Jaswal, R.F. Mann, J.A. Juusola, J. Downie, The vapour-phase oxidation of benzene over a vanadium pentoxide catalyst. Can. J. Chem. Eng. 47(3), 284–287 (1969)

    Article  Google Scholar 

  23. S. Karlin, M.H. Taylor, A First Course in Stochastic Processes (Academic Press, New York, 1975)

    MATH  Google Scholar 

  24. D.G. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. Ann. Math. Stat. 1, 338–54 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.P. Kitsos, Design and inference for Non-linear Problems. Unpublished Ph.D. thesis, Univ. of Glascow

    Google Scholar 

  26. C.P. Kitsos, Fully-sequential procedures in nonlinear design problems. Comput. Stat. Data Anal. 8(1), 13–19 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. C.P. Kitsos, On the support points of D-optimal non-linear experimental design for kinetics, in MODA4: Advances in Model-Oriented Data Analysis, ed. by C.P. Kitsos, W.G. Muller (Physica Verlag, Heidelberg, 1995), pp. 71–76

    Chapter  Google Scholar 

  28. C.P. Kitsos, Nonlinear: optimal—sequential experiment designs and applications, in Proceedings of the 51st International Conference on Industrial Statistics: Aims and Computational Aspects, ed. by C.P. Kitsos, L. Edler, Athens, Greece, August 16–17, 1997 (Physica-Verlag, Heidelberg, 1997), pp. 151–163

    Google Scholar 

  29. C.P. Kitsos, Design aspects for the Michaelis Menten model. Biometrical Lett. 38(1), 53–66 (2001)

    Google Scholar 

  30. C.P. Kitsos, Technological Mathematics and Statistics, vols. I, II (New Technologies Pub., Greece, 2009)

    Google Scholar 

  31. C.P. Kitsos, Sequential Approaches for Ca tolerance models. Biometrie und Medizinische Informatik, Greifswalder Seminarbeichte, vol. 18 (Shaker Verlag, 2011), pp. 87–98

    Google Scholar 

  32. C.P. Kitsos, K.G. Kolovos, An Optimal Calibration Design for pH Meters. Instrumentation Sci. Tech. 38(6), 436–447 (2010)

    Article  Google Scholar 

  33. C.P. Kitsos, K.G. Kolovos, A compilation of the D-optimal designs in chemical kinetics. Chem. Eng. Commun. 200(2), 185–204 (2013)

    Article  Google Scholar 

  34. S. Lopez, J. France, W.J. Gerrits, M.S. Dhanoa, D.J. Humphries, J. Dijkstra, A generalized Michaelis-Menten equation for the analysis of growth. J. Anim. Sci. 78(7), 1816–1828 (2000)

    Article  Google Scholar 

  35. P. Mars, D.W. van Krevelen, Oxidations carried out by means of vanadium oxided catalysts. Chem. Eng. Sci. 3, 41–59 (1954)

    Article  Google Scholar 

  36. I. Martinez, I. Ortiz, C. Rodriguez, Optimal design for weighted rational models. Appl. Math. Lett. 2009, 22(12), 1892–1895

    Article  MathSciNet  MATH  Google Scholar 

  37. E.A. Mitscherlich, The law of the minimum and the law of diminishing soil productivity (In German). Landwirtschafliche Jahrbuecher 38, 537–552 (1909)

    Google Scholar 

  38. J. Ortega, W. Rheinbolt, Iterative Solution of Equations in Several Variables (Academic Press, New York 1970)

    Google Scholar 

  39. L.J. Rodriguez-Aragon, J. Lopez-Fidalgo, Optimal designs for the Arrhenius equation. Chemom. Intell. Lab. Syst. 77(1–2), 131–138 (2005)

    Article  Google Scholar 

  40. G.A.F. Seber, C.J. Wild, Nonlinear Regression (Wiley, New York, 1989), 768 pp.

    Book  MATH  Google Scholar 

  41. K. Smith, On the standard deviation of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12(1–2), 1–85 (1918)

    Article  Google Scholar 

  42. G.D. Smith, Solution of Partial Differential Equations (Oxford University Press, London, 1965)

    Google Scholar 

  43. J.M. Smith, Chemical Engineering Kinetics (McGraw Hill, Singapore, 1981)

    Google Scholar 

  44. D. Steinberg, W. Hunter, Experimental design: review and comment. Technometrics 26(2), 71–97 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  45. H.M.J. Thorney, Mathematical Models in Plant Physiology (Academic Press, London, 1976)

    Google Scholar 

  46. G.B. Van Albada, Formation and evolution of clusters of galaxies (Errata: 15 330). Bull. Bull. Astron. Inst. Neth. 15, 165 (1960)

    Google Scholar 

  47. Q. Wright, A Study of War. 1942, 2 vols. (Univ. of Chicago Press, Chicago, 1942)

    Google Scholar 

  48. V. Zarikas, V. Gikas, C.P. Kitsos, Evaluation of the optimal design Cosinor model for enhancing the potential of robotic theodolite kinematic observation. Measurement 43(10), 1416–1424 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos P. Kitsos .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Let us consider the main types of fundamental electrical circuits, so essential to build a differential equations approach to electrical circuits. To avoid any confusion the imaginary unit is denoted by j = (0, 1) and the current is denoted by i = i(t).

  1. 1.

    An RL—circuit.

    The voltage source, where it is assumed that it is AC, and thus \(E = E_0 \sin \omega t\). Then based on the 2nd law of Kirchoff:

    $$\displaystyle \begin{aligned} L\frac{di}{dt} + R_i = E_0\sin\omega t\qquad t\geq 0 \end{aligned}$$

    The (general) solution is:

    $$\displaystyle \begin{aligned} \begin{array}{rcl} & i(t) = i_0 e^{-\frac{R}{L}t} + E_0\left(R^2 + L^2\omega^2\right)^{-1/2} \sin\left(\omega t - Arctan\frac{\omega L}{R} \right)\\ & \qquad + E_0\omega\left(R^2 + L^2\omega^2\right)^{-1} e^{-\frac{R}{L}t} \end{array} \end{aligned} $$
  2. 2.

    An RC—Circuit.

    Then it holds:

    $$\displaystyle \begin{aligned} R_i + \frac{1}{C}\int_{0}^{t} idt_1 = E(t) \end{aligned}$$

    And if E(t) =  constant = E 0 then:

    $$\displaystyle \begin{aligned} R_i + \frac{1}{C}\int_{0}^{t} idt_1 = E_0 \end{aligned}$$

    And the solution is:

    $$\displaystyle \begin{aligned} i = i(t) = \frac{E_0}{R}e^{-t/RC}\text{,} \end{aligned}$$
  3. 3.

    RC—circuit with \(E = E_0\cos {}(\omega t)\)

    Then it holds:

    $$\displaystyle \begin{aligned} R_i + \frac{1}{C}\int_{0}^{t} idt_1 = E_0\cos{}(\omega t) \end{aligned}$$

    And if we let:

    $$\displaystyle \begin{aligned} u = \int_{0}^{t} idt_1 \end{aligned}$$

    We obtain that:

    $$\displaystyle \begin{aligned} R\frac{du}{dt} + \frac{u}{C} = E_0\cos{}(\omega t)\text{,}\qquad u(0) = 0 \end{aligned}$$

    Thus:

    $$\displaystyle \begin{aligned} u & = t e^{-t/RC}\int_{0}^{t}\frac{E_0}{R}e^{-t_1/RC}\cos{}(t)du \\ & = \frac{E_0}{R}\left[\frac{\left(1/RC\right)\left(\cos{}(\omega t) - e^{-t/RC}\right) + \omega\sin{}(\omega t)}{(1/RC)^2 + \omega^2}\right] = u_1 + u_2 \end{aligned} $$

    With:

    $$\displaystyle \begin{aligned} u_1 = \frac{-E_0/R\left(e^{-t/RC}/RC\right)}{(1/RC)^2 + \omega^2} \text{ ,}\quad u_2 = \frac{E_0}{R} \frac{\left(1/RC\right)\cos{}(\omega t) + \omega\sin{}(\omega t)}{(1/RC)^2 + \omega^2} \end{aligned}$$

    Eventually we can evaluate that:

    $$\displaystyle \begin{aligned} i_1 &= \frac{du_1}{dt} = \frac{-E_0/R\left(e^{-t/RC}/RC\right)^2}{(1/RC)^2 + \omega^2} = \frac{E_0}{R}e^{-t/RC} / (1 + \omega^2 (RC)^2) \\ i_2 &= \frac{du_1}{dt} = \frac{E_0}{R}\left[\frac{-\omega RC \sin{}(\omega t) + \omega^2(RC)^2\cos{}(\omega t)}{1 + (RC)^2 \omega^2}\right] \\ &\cong\frac{E_0}{R}\left[\frac{-\omega RC \sin{}(\omega t)}{1}\right] = -\omega CE_0\sin{}(\omega t) \end{aligned} $$

    Notice that with t ≪ i 1, t = RC say then: \( i_1 \cong \frac {E_0}{R} \frac {1}{e}\text{.}\)

  4. 4.

    RL—circuit

    Assuming that E = E 0 the (de) concerning this circuit is:

    $$\displaystyle \begin{aligned} L \frac{di}{dt} + Ri = E_0\text{,}\qquad L(0) = 0 \end{aligned} $$

    With solution: \( i = \frac {E_0}{R} - \frac {E_0}{R} e^{-\frac {R}{L}t} \)

  5. 5.

    LC—circuit with E = E 0.

    The corresponding (de) is:

    $$\displaystyle \begin{aligned} L\frac{di}{dt} + \frac{1}{C}\int_{0}^{t} i dt_1 = E(t) \text{ and the solution is:} \end{aligned} $$
    $$\displaystyle \begin{aligned} i = E_0\sqrt{C/L}\sin\left(t / \sqrt{LC}\right) \text{ with } i(0) = 0 \text{ and } L_i^{\prime}(0) = E_0 \end{aligned} $$
  6. 6.

    LC—circuit with \(E = E_0\cos {}(\omega t)\).

    The corresponding equation is: \( L\frac {di}{dt} + \frac {1}{C}\int _{0}^{t} i dt = E_0\cos {}(\omega t)\text{.}\)

    With solution eventually: \( i = \frac {e^{j\omega t}}{\left (-L\omega ^2 + j\omega R + 1 / C\right )}\)

    As it is known that it holds:

    $$\displaystyle \begin{aligned} \sin{}(\omega t) = \frac{e^{j \omega t} - e^{-j \omega t}}{2 j} \end{aligned} $$

    with the appropriate calculations the general solution eventually is:

    $$\displaystyle \begin{aligned} i = -\frac{E_0\omega \left(1 / C - L\omega^2\right)\sin{}(\omega t + E_0 R \omega^2\cos{}(\omega t)}{\left(-L\omega^2 + 1 / C\right)^2 + \omega^2 R^2} \end{aligned}$$

    There is an extensive approach which is beyond the target of this appendix.

Appendix 2: Introduction to Heat Equation

Consider a random walk, where we assume that the probability to move to the closest up, down, backwards, forwards points are equal to 1∕4. Let P(x, y;t) be the probability that a particle at time t is at (x, y) ∈ R 2 point. Then we can see that at time t + 1 holds:

$$\displaystyle \begin{aligned} P(x,y; t + 1) {=} \frac{1}{4}\left\{P(x {-} 1, y; t) {+} P(x, y {-} 1; t) {+} P(x + 1, y, t) {+} P(x, y + 1; t)\right\} \end{aligned}$$

Thus for the difference:

$$\displaystyle \begin{aligned} P(x,y; t + 1) - P(x,y; t) &= \frac{1}{4} \Big\{ P(x + 1, y; t) - 2 P(x, y; t) + P(x - 1, y, t)\\ &\quad + P(x, y + 1; t) - 2P(x, y; t) + P(x, y - 1; t)\Big\} \end{aligned} $$

This difference equation approximated by the two-dimensional heat equation:

$$\displaystyle \begin{aligned} \frac{\partial P}{\partial t} = C\left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2}\right) \end{aligned}$$

If we assume that the random—walk takes place in a limited domain D, usually of the form D = (l, u) × [L, U] ⊆ R 2. More over it is assumed that the particle is absorbed when it reaches the boundary. Let (x 0, y 0) be the boundary points and W = W(x b, y b) the associated “profit that is paid out”.

If we denote by P(x, y;x 0, y 0) the probability that the particle start from the (interior) point (x, y) to be absorbed at the boundary (x b, y b) the expected “profit” is:

$$\displaystyle \begin{aligned} u(x,y) = \sum_{b} P(x, y; x_b, y_b) W(x_b, y_b) \end{aligned}$$

and satisfies the difference equation

$$\displaystyle \begin{aligned} u(x, y) = \frac{1}{4}\left\{u(x + 1, y) + u(x - 1, y) + u(x, y + 1) + u(x, y - 1)\right\} \end{aligned}$$

with u(x b, y b) = W(x b, y b). This equation is a well-known approximation of the Laplace equation:

$$\displaystyle \begin{aligned} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \end{aligned}$$

Recall that

$$\displaystyle \begin{aligned} \nabla^2 u = \left\{ \begin{array}{ll} 0 & \text{Laplace equation} \\ {} C(x,y) & \text{Poisson equation} \end{array} \right. \end{aligned}$$

Through the Laplace equation three different well-known problems, associated with the boundary are defined: Dirichlet’s problem, Neuman’s problem, Robbin–Churchill’s problem for elliptic equations.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitsos, C.P., Nisiotis, C.S.A. (2021). The Role of Differential Equations in Applied Statistics. In: Rassias, T.M. (eds) Nonlinear Analysis, Differential Equations, and Applications. Springer Optimization and Its Applications, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-72563-1_10

Download citation

Publish with us

Policies and ethics