Skip to main content

Learning Analytics and Privacy—Respecting Privacy in Digital Learning Scenarios

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 619)

Abstract

With the rise of digital systems in learning scenarios in recent years as learning management systems, massive open online courses, serious games, and the use of sensors and IoT devices huge amounts of personal data are generated. In the context of learning analytics, this data is used to individualize contents and exercises, predict success or dropout. Based on a meta analysis it is investigated to which extent the privacy of learners is respected. Our research found that, although surveys have shown that privacy is a concern for learners and critical to adopt to establish trust in learning analytic solutions, privacy issues are very rarely addressed in actual learning analytic setups.

Keywords

  • Learning analytics
  • Privacy
  • Educational datamining
  • MOOC
  • LMS
  • Serious games

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72465-8_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-72465-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. What is learning analytics. https://www.solaresearch.org/about/what-is-learning-analytics/

  2. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018

    Google Scholar 

  3. Arnold, K.E., Pistilli, M.D.: Course signals at Purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, LAK 2012, Vancouver, British Columbia, Canada, pp. 267–270. Association for Computing Machinery, April 2012. https://doi.org/10.1145/2330601.2330666

  4. Bernstein, D.J.: Chacha, a variant of salsa20. In: Workshop Record of SASC, vol. 8, pp. 3–5 (2008)

    Google Scholar 

  5. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/s13389-012-0027-1

    CrossRef  MATH  Google Scholar 

  6. Bosch, N., Crues, R.W., Paquette, L., Shaik, N.: “Hello, [REDACTED]”: protecting student privacy in analyses of online discussion forums. EDM (2020)

    Google Scholar 

  7. Chen, G., Rolim, V., Mello, R.F., Gašević, D.: Let’s shine together! a comparative study between learning analytics and educational data mining. In: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, LAK 2020, Frankfurt, Germany, pp. 544–553. Association for Computing Machinery, March 2020. https://doi.org/10.1145/3375462.3375500

  8. Corrin, L., et al.: The ethics of learning analytics in Australian higher education (2019). https://melbourne-cshe.unimelb.edu.au/research/research-projects/edutech/the-ethical-use-of-learning-analytics

  9. Daemen, J., Rijmen, V.: Reijndael: the advanced encryption standard. Dr. Dobb’s J. Softw. Tools Prof. Program. 26(3), 137–139 (2001)

    Google Scholar 

  10. Drachsler, H., Greller, W.: Privacy and analytics: it’s a DELICATE issue a checklist for trusted learning analytics. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, LAK 2016, Edinburgh, United Kingdom, pp. 89–98. Association for Computing Machinery, April 2016. https://doi.org/10.1145/2883851.2883893

  11. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    CrossRef  MATH  Google Scholar 

  12. Flanagan, B., Ogata, H.: Integration of learning analytics research and production systems while protecting privacy. In: The 25th International Conference on Computers in Education, Christchurch, New Zealand, pp. 333–338 (2017)

    Google Scholar 

  13. Hansen, M., Jensen, M., Rost, M.: Protection goals for privacy engineering. In: 2015 IEEE Security and Privacy Workshops, pp. 159–166. IEEE (2015)

    Google Scholar 

  14. Hermann, O., Hansen, J., Rensing, C., Drachsler, H.: Verhaltenskodex für trusted learning analytics, March 2020. https://doi.org/10.13140/RG.2.2.24859.41760

  15. Hernández-Lara, A.B., Perera-Lluna, A., Serradell-López, E.: Applying learning analytics to students’ interaction in business simulation games. the usefulness of learning analytics to know what students really learn. Comput. Hum. Behav. 92, 600–612 (2019)

    Google Scholar 

  16. Karumbaiah, S., Baker, R.S.J.D., Shute, V.J.: Predicting quitting in students playing a learning game. In: EDM (2018)

    Google Scholar 

  17. Kim, B.H., Vizitei, E., Ganapathi, V.: GritNet: student performance prediction with deep learning. In: EDM (2018)

    Google Scholar 

  18. Klose, M., Desai, V., Song, Y., Gehringer, E.: EDM and privacy: ethics and legalities of data collection, usage, and storage. In: EDM (2020)

    Google Scholar 

  19. Käser, T., Schwartz, D.L.: Exploring neural network models for the classification of students in highly interactive environments. In: EDM 2019, International Educational Data Mining Society, July 2019. https://eric.ed.gov/?id=ED599211

  20. Murmann, P., Reinhardt, D., Fischer-Hübner, S.: To be, or not to be notified. In: Dhillon, G., Karlsson, F., Hedström, K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 209–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22312-0_15

    CrossRef  Google Scholar 

  21. Mwalumbwe, I., Mtebe, J.S.: Using learning analytics to predict students’ performance in Moodle learning management system: a case of Mbeya University of Science and Technology. Electron. J. Inf. Syst. Dev. Countries 79(1), 1–13 (2017). https://doi.org/10.1002/j.1681-4835.2017.tb00577.x

    CrossRef  Google Scholar 

  22. Papamitsiou, Z., Giannakos, M.N., Ochoa, X.: From childhood to maturity: are we there yet? Mapping the intellectual progress in learning analytics during the past decade. In: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, LAK 2020, Frankfurt, Germany, pp. 559–568. Association for Computing Machinery, March 2020. https://doi.org/10.1145/3375462.3375519

  23. Pardo, A., Siemens, G.: Ethical and privacy principles for learning analytics. Br. J. Educ. Technol. 45(3), 438–450 (2014). https://doi.org/10.1111/bjet.12152

    CrossRef  Google Scholar 

  24. Pelaez, K., Levine, R., Fan, J., Guarcello, M., Laumakis, M.: Using a latent class forest to identify at-risk students in higher education. In: EDM 2019 (2019). https://doi.org/10.5281/zenodo.3554747

  25. Pirkl, G., et al.: Any problems? a wearable sensor-based platform for representational learning-analytics. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 353–356 (2016)

    Google Scholar 

  26. Sclater, N.: Developing a code of practice for learning analytics. J. Learn. Anal. 3(1), 16–42 (2016). https://doi.org/10.18608/jla.2016.31.3

    CrossRef  Google Scholar 

  27. Tsai, Y.S., Whitelock-Wainwright, A., Gašević, D.: The privacy paradox and its implications for learning analytics. In: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, LAK 2020, Frankfurt, Germany, pp. 230–239. Association for Computing Machinery, March 2020. https://doi.org/10.1145/3375462.3375536

  28. Wampfler, R., Klingler, S., Solenthaler, B., Schinazi, V., Gross, M.: Affective state prediction in a mobile setting using wearable biometric sensors and stylus (2019). https://doi.org/10.3929/ethz-b-000393912

  29. Whitelock-Wainwright, A., et al.: Assessing the validity of a learning analytics expectation instrument: a multinational study. J. Comput. Assist. Learn. (2020). https://doi.org/10.1111/jcal.12401

    CrossRef  Google Scholar 

Download references

Acknowledgement

This work was supported by the Leibniz Association and the Ministry for Science and Culture of Lower Saxony as part of Leibniz ScienceCampus – Postdigital Participation – Braunschweig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Priedigkeit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Priedigkeit, M., Weich, A., Schiering, I. (2021). Learning Analytics and Privacy—Respecting Privacy in Digital Learning Scenarios. In: Friedewald, M., Schiffner, S., Krenn, S. (eds) Privacy and Identity Management. Privacy and Identity 2020. IFIP Advances in Information and Communication Technology, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-030-72465-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72465-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72464-1

  • Online ISBN: 978-3-030-72465-8

  • eBook Packages: Computer ScienceComputer Science (R0)