Skip to main content

Pharmaceutical Pollutants in Water: Origin, Toxicity Hazards, and Treatment

  • Chapter
  • First Online:
Book cover Organic Pollutants

Abstract

Medicines are immensely playing an essential role in protecting human and animal health. Pharmaceuticals are categorized into myriad therapeutic divisions, including anti-inflammatories, antibiotics, antipsychotics, antihypertensives, antidiabetics, antihistamines, lipid regulators, anticonvulsant, β-blockers, stimulants and statins. This chapter is aimed to offer a brief overview on the origin of pollutants of antibiotic and anti-inflammatory medicines and their brief toxicity hazards to human and aquatic life. Due to the high prevalence of infectious diseases, antibiotics and related by-products are one of the major pharmaceutical pollutants. Non-steroidal anti-inflammatory drugs (NSAIDs) are customarily being used and consequently are perceived in effluent and wetland water and may be found in groundwater systems. There are growing environmental concerns and excessive usage of medicines emerging as contaminants when their residues enter freshwater systems. Overwhelmed use of pharmaceuticals showed impact on aquatic and terrestrial living beings as well as the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Activated carbon

AMWPE:

Average molecular weight medium density polyethylene

AOP:

Advanced oxidation process

API:

Active pharmaceutical ingredient

BIS:

Bureau of Indian Standards

BOD:

Biological oxygen demand

CL:

Castor leaves

COD:

Chemical oxygen demand

COF:

Carbon organic frameworks

CPCB:

Central Pollution Control Board

DCF:

Diclofenac

GnO:

Graphene oxide

GWRC:

Global Water Research Coalition

HQ:

Hazard quotient

IBU:

Ibuprofen

ICMR:

Indian Council of Medical Research

ICNP:

Iron composite nanoparticles

KTP:

Ketoprofen

LF:

Luffa cylindrical

MeIM:

Methylimidazole

MOF:

Metal organic framework

NPX:

Naproxen

NSAID:

Non-steroidal anti-inflammatory drug

POP:

Pseudo-persistent pollutant

PP:

Polypropylene

PXRD:

Powder X-ray diffraction

RH:

Rice husk

SB:

Sugarcane bagasse

SIL:

Silica modified with ionic liquids

UHMWPE:

Ultra high molecular weight polyethylene

WHO:

World Health Organization

ZIF-8@NiAl-LDHs:

Zeolitic imidazolate framework @ layered double hydroxides

Bibliography

  • Adityosulindro, S., Julcour, C., & Barthe, L. (2018). Heterogeneous Fenton oxidation using Fe-ZSM5 catalyst for removal of ibuprofen in wastewater. Journal of Environmental Chemical Engineering, 6, 5920–5928.

    Article  CAS  Google Scholar 

  • Ahmed, M. J. (2017). Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review. Journal of Environmental Management, 190, 274–282.

    Article  CAS  Google Scholar 

  • Ali, A. M., Sydnes, L. K., Alarif, W. M., Al-Lihaibi, S. S., Aly, M. M., Aanrud, S. G., & Kallenborn, R. (2019). Diclofenac and two of its photooxidation products in the marine environment: Their toxicology and occurrence in Red Sea coastal waters. Environmental Chemistry and Ecotoxicology, 1, 19–25.

    Article  Google Scholar 

  • Almeida, Â., Solé, M., Soares, A. M., & Freitas, R. (2020). Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. Environmental Pollution, 263, 114442.

    Article  CAS  Google Scholar 

  • Alothman, Z. A., Badjah, A. Y., Alharbi, O. M., & Ali, I. (2020). Synthesis of chitosan composite iron nanoparticles for removal of Diclofenac sodium drug residue in water. International Journal of Biological Macromolecules, 159, 870–876.

    Article  CAS  Google Scholar 

  • Bhardwaj, R., Gupta, A., & Garg, J. (2017). Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Science, 31, 52–66.

    Article  Google Scholar 

  • Braga, L. R., TO, C., Nunes, A. R., Araújo, K. R. O., & Prado, A. G. S. (2017). Removal of emergent pollutants (oxicam, nonsteroidal anti-inflammatory drug) from water by chitosan microspheres. Journal of Thermal Analysis and Calorimetry, 130, 1697–1706.

    Article  CAS  Google Scholar 

  • Chi-Yu, H., Lh, F., Mh, S., Cf, H., Jp, W., & Hw, K. (2018). Ibuprofen biodegradation by hospital, municipal, and distillery activated sludges. Environmental Technology, 41, 171–180.

    Google Scholar 

  • Dogan, A., Płotka-Wasylka, J., Kempińska-Kupczyk, D., Namieśnik, J., & Kot-Wasik, A. (2020). Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges. TrAC Trends in Analytical Chemistry, 122, 115710.

    Article  CAS  Google Scholar 

  • Ekowati, Y., Buttiglieri, G., Ferrero, G., Valle-Sistac, J., Diaz-Cruz, M. S., Barceló, D., Petrovic, M., Villagrasa, M., Kennedy, M. D., & Rodríguez-Roda, I. (2016). Occurrence of pharmaceuticals and UV filters in swimming pools and spas. Environmental Science and Pollution Research, 23, 14431–14441.

    Article  CAS  Google Scholar 

  • Elhalil, A., Farnane, M., Machrouhi, A., Mahjoubi, F. Z., Elmoubarki, R., Tounsadi, H., Abdennouri, M., & Barka, N. (2018). Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants. Journal of Science: Advanced Materials and Devices, 3, 188–195.

    Google Scholar 

  • Elizalde-Velázquez, A., Subbiah, S., Anderson, T. A., Green, M. J., Zhao, X., & Cañas-Carrell, J. E. (2020). Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. Science of the Total Environment, 715, 136974.

    Article  Google Scholar 

  • Elsayed, E. E. (2018). Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study). Water Science, 32, 32–43.

    Article  Google Scholar 

  • Fantuzzi, G., Aggazzotti, G., Righi, E., Predieri, G., Castiglioni, S., Riva, F., & Zuccato, E. (2018). Illicit drugs and pharmaceuticals in swimming pool waters. Science of the Total Environment, 635, 956–963.

    Article  CAS  Google Scholar 

  • Flores-Céspedes, F., Villafranca-Sánchez, M., & Fernández-Pérez, M. (2020). Alginate-based hydrogels modified with olive pomace and lignin to removal organic pollutants from aqueous solutions. International Journal of Biological Macromolecules, 153, 883–891.

    Article  Google Scholar 

  • Fu, Y., Gao, X., Geng, J., Li, S., Wu, G., & Ren, H. (2019). Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: Degradation mechanisms, efficiency in effluents disposal. Chemical Engineering Journal, 356, 1032–1041.

    Article  CAS  Google Scholar 

  • Ganesan, T., Mukhtar, N. H., Lim, H. N., & See, H. H. (2020). Mixed matrix membrane tip extraction coupled with UPLC–MS/MS for the monitoring of nonsteroidal anti-inflammatory drugs in water samples. Separations, 7, 19.

    Article  CAS  Google Scholar 

  • González-Alonso, S., Merino, L. M., Esteban, S., López de Alda, M., Barceló, D., Durán, J. J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., & Valcárcel, Y. (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environmental Pollution, 229, 241–254.

    Article  Google Scholar 

  • Gumbi, B. P., Moodley, B., Birungi, G., & Ndungu, P. G. (2017). Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry. Chemosphere, 168, 1042–1050.

    Article  CAS  Google Scholar 

  • Gupta, N., Pandey, P., & Hussain, J. (2017). Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Science, 31, 11–23.

    Article  Google Scholar 

  • He, B.-S., Wang, J., Liu, J., & Hu, X.-M. (2017). Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs: Necessity and opportunities. Chemosphere, 181, 178–189.

    Article  CAS  Google Scholar 

  • Hiew, B. Y. Z., Lee, L. Y., Lee, X. J., Gan, S., Thangalazhy-Gopakumar, S., Lim, S. S., Pan, G.-T., & Yang, T. C. K. (2019). Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 98, 150–162.

    Article  CAS  Google Scholar 

  • Hussain, S., Aneggi, E., Briguglio, S., Mattiussi, M., Gelao, V., Cabras, I., Zorzenon, L., Trovarelli, A. & Goi, D. (2020). Enhanced ibuprofen removal by heterogeneous-Fenton process over Cu/ZrO2 and Fe/ZrO2 catalysts, Journal of Environmental Chemical Engineering, 8, 103586.

    Google Scholar 

  • Jian, N., Qian, L., Wang, C., Li, R., Xu, Q., & Li, J. (2019). Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water. Journal of Hazardous Materials, 363, 81–89.

    Article  CAS  Google Scholar 

  • Jindal, R., & Sharma, C. (2010). Studies on water quality of Sutlej River around Ludhiana with reference to physicochemical parameters. Environmental Monitoring and Assessment, 174, 417–425.

    Article  Google Scholar 

  • Kaur, A., Umar, A., & Kansal, S. K. (2016). Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs. Applied Catalysis A: General, 510, 134–155.

    Article  CAS  Google Scholar 

  • Kebede, T., Dube, S., & Nindi, M. (2018). Removal of non-steroidal anti-inflammatory drugs (NSAIDs) and carbamazepine from wastewater using water-soluble protein extracted from Moringa stenopetala seeds. Journal of Environmental Chemical Engineering, 6, 3095–3103.

    Article  CAS  Google Scholar 

  • Khadir, A., Negarestani, M., & Mollahosseini, A. (2020). Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: Study of parameters, kinetics, and equilibrium. Journal of Environmental Chemical Engineering, 8, 103734.

    Article  CAS  Google Scholar 

  • Khalil, A. M., Memon, F. A., Tabish, T. A., Salmon, D., Zhang, S., & Butler, D. (2020). Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal, 398, 125440.

    Article  CAS  Google Scholar 

  • Kumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., & Stadler, F. J. (2019). Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. Journal of Molecular Liquids, 290, 111177.

    Article  CAS  Google Scholar 

  • Li, Z., & Yang, P. (2018). Review on physicochemical, chemical, and biological processes for pharmaceutical wastewater. IOP Conference Series: Earth and Environmental Science, 113, 012185.

    Google Scholar 

  • Lin, S., Zhao, Y., & Yun, Y.-S. (2018). Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal–organic framework: Adsorption performance and mechanisms. ACS Applied Materials & Interfaces, 10, 28076–28085.

    Article  CAS  Google Scholar 

  • Lu, F., & Astruc, D. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 408, 213180.

    Article  CAS  Google Scholar 

  • Ma, R., Qu, H., Wang, B., Wang, F., Yu, Y., & Yu, G. (2019). Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China. Ecotoxicology and Environmental Safety, 174, 83–91.

    Article  CAS  Google Scholar 

  • Madikizela, L. M., Tavengwa, N. T., & Chimuka, L. (2018). Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. Journal of Pharmaceutical and Biomedical Analysis, 147, 624–633.

    Article  CAS  Google Scholar 

  • Mellah, A., Fernandes, S. P. S., Rodríguez, R., Otero, J., Paz, J., Cruces, J., Medina, D. D., Djamila, H., Espiña, B., & Salonen, L. M. (2018). Adsorption of pharmaceutical pollutants from water using covalent organic frameworks. Chemistry – A European Journal, 24, 10601–10605.

    Article  CAS  Google Scholar 

  • Mlunguza, N. Y., Ncube, S., Mahlambi, P. N., Chimuka, L., & Madikizela, L. M. (2019). Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. Journal of Environmental Chemical Engineering, 7, 103142.

    Article  CAS  Google Scholar 

  • Nadais, H., Li, X., Alves, N., Couras, C., Andersen, H. R., Angelidaki, I., & Zhang, Y. (2018). Bio-electro-Fenton process for the degradation of non-steroidal anti-inflammatory drugs in wastewater. Chemical Engineering Journal, 338, 401–410.

    Article  CAS  Google Scholar 

  • Nouri, N., Khorram, P., Duman, O., Sibel, T., & Hassan, S. (2020). Overview of nanosorbents used in solid phase extraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Trends in Environmental Analytical Chemistry. https://doi.org/10.1016/j.teac.2020.e00081

  • Parolini, M. (2020). Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Science of the Total Environment, 740, 140043.

    Article  CAS  Google Scholar 

  • Pierattini, E. C., Francini, A., Huber, C., Sebastiani, L., & Schröder, P. (2018). Poplar and diclofenac pollution: A focus on physiology, oxidative stress and uptake in plant organs. Science of the Total Environment, 636, 944–952.

    Article  CAS  Google Scholar 

  • Peydayesh, M., Suter, M. K., Bolisetty, S., Boulos, S., Handschin, S., Nyström, L., & Mezzenga, R. (2020). Amyloid fibrils aerogel for sustainable removal of organic contaminants from water. Advanced Materials, 32, 1907932.

    Article  CAS  Google Scholar 

  • Quesada, H. B., Baptista, A. T. A., Cusioli, L. F., Seibert, D., de Oliveira, B. C., & Bergamasco, R. (2019). Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 222, 766–780.

    Article  CAS  Google Scholar 

  • Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry, 6, 523–530.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Gómez-Pacheco CV, Sánchez-Polo M, López-Peñalver JJ, Ocampo-Pérez R (2013) Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. Journal of Environmental Management 131:16–24.

    Article  CAS  Google Scholar 

  • Sarker, M., Song, J. Y., & Jhung, S. H. (2018). Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chemical Engineering Journal, 335, 74–81.

    Article  CAS  Google Scholar 

  • Saxena, A., Bhardwaj, M., Allen, T., Kumar, S., & Sahney, R. (2017). Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents. Water Science, 31, 189–197.

    Article  Google Scholar 

  • Springer, V., Barreiros, L., Avena, M., & Segundo, M. A. (2018). Nickel ferrite nanoparticles for removal of polar pharmaceuticals from water samples with multi-purpose features. Adsorption, 24, 431–441.

    Article  CAS  Google Scholar 

  • Teo, T. L., Coleman, H. M., & Khan, S. J. (2015). Chemical contaminants in swimming pools: Occurrence, implications and control. Environment International, 76, 16–31.

    Article  CAS  Google Scholar 

  • Tomul, F., Arslan, Y., Başoğlu, F. T., Babuçcuoğlu, Y., & Tran, H. N. (2019). Efficient removal of anti-inflammatory from solution by Fe-containing activated carbon: Adsorption kinetics, isotherms, and thermodynamics. Journal of Environmental Management, 238, 296–306.

    Article  CAS  Google Scholar 

  • Tran, H. N., Tomul, F., Ha, N. T. H., Nguyen, D. T., Lima, E. C., Le, G. T., Chang, C. T., Masindi, V., & Woo, S. H. (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. Journal of Hazardous Materials, 394, 122255.

    Article  CAS  Google Scholar 

  • Verma, S. R., Sharma, P., Tyagi, A., Rani, S., Gupta, A. K., & Dalela, R. C. (1984). Pollution and saprobic status of eastern Kalinadi. Limnologia, 15, 69–133.

    Google Scholar 

  • Villanueva-Rodríguez, M., Bello-Mendoza, R., Hernández-Ramírez, A., & Ruiz-Ruiz, E. J. (2018). Degradation of anti-inflammatory drugs in municipal wastewater by heterogeneous photocatalysis and electro-Fenton process. Environmental Technology, 40, 2436–2445.

    Article  Google Scholar 

  • Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4, 762–787.

    Article  CAS  Google Scholar 

  • Yang, W., Oturan, N., Raffy, S., Zhou, M., & Oturan, M. A. (2020). Electrocatalytic generation of homogeneous and heterogeneous hydroxyl radicals for cold mineralization of anti-cancer drug Imatinib. Chemical Engineering Journal, 383, 123155.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors grateful to the Principal, Pachaiyappa’s College for providing basic research facilities to accomplish the task. Dr. V. Sivamurugan gratefully acknowledges the love and support of his wife Dr. P. Priya and his beloved son Master. S. Ashwin.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanalakshmi, R., Priya, P., Sivamurugan, V. (2022). Pharmaceutical Pollutants in Water: Origin, Toxicity Hazards, and Treatment. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds) Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-72441-2_12

Download citation

Publish with us

Policies and ethics