Skip to main content

Contemporary Magnesium Die-Casting Research and Technology: A Canadian Viewpoint

  • Conference paper
  • First Online:
Magnesium 2021

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 575 Accesses

Abstract

For the last 20 years, Canada has been a world leader in magnesium die-casting research and development. The breadth of research faculty and facilities, presence of a strong industrial sector, and the participation of government funded programs and agencies have fueled significant developments. This paper provides an overview of the developments led by Canadian researchers in the field of magnesium die-casting in alloy development, property, and microstructural characterization, development of ICME models, joining and corrosion technologies, and automotive product development with focus on developments funded by large-scale government funded research programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Government of Canada (2019) About CanmetMATERIALS website. https://www.nrcan.gc.ca/science-and-data/research-centres-and-labs/canmetmaterials/canmetmaterials/8234. Accessed 9 June 2020

  2. Elsevier (2020) Scopus document search. https://www.scopus.com/home.uri. Accessed 6 May 2020

  3. American Society for Testing and Materials (2018) ASTM B94–18. Standard specification for magnesium-alloy die castings, ASTM international, West Conshohocken, PA

    Google Scholar 

  4. Aragones J et al (2005) Development of the 2006 corvette Z06 structural cast magnesium crossmember. SAE Technical Paper 2005–01–0340. https://doi.org/10.4271/2005-01-0340

  5. Baril E, Labelle P, Pekguleryuz MO (2003) Elevated temperature Mg-Al-Sr: Creep Resistance, Mechanical properties, and microstructure. JOM 55:34–39. https://doi.org/10.1007/s11837-003-0207-7

  6. Forakis P, Richard E, Argo D (2002) Fluxless Refining of Clean Diecast Scrap for Noranda’s AJ52 high temperature Mg-Al-Sr alloys. In: Kaplan HI (ed) Magnesium technology 2002. The minerals, metals and materials society, Warrendale, pp 12–17

    Google Scholar 

  7. Argo D et al (2002) Process parameters and diecasting of Noranda’s AJ52 high temperature Mg-Al-Sr alloy. In: Kaplan HI (ed) Magnesium technology 2002. The minerals, metals and materials society, Warrendale, pp 18–24

    Google Scholar 

  8. Labelle P et al. (2002) New aspects of temperature behavior of AJ52x, creep resistant magnesium alloy. SAE Technical Paper 2002–01–0079. https://doi.org/10.4271/2002-01-0079

  9. Pekguleryuz M et al (2003) Magnesium diecasting alloy AJ62X with superior creep resistance, ductility and diecastability. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals and materials society, Warrendale, pp 201–206

    Google Scholar 

  10. Pekguleryuz M, Labelle P, Argo D (2003) Magnesium die casting Alloy AJ62x with superior creep resistance, ductility and die castability. SAE Technical Paper 2003–01–0190. doi: https://doi.org/10.4271/2003-01-0190

  11. Baril E, Labelle P, Fischersworring-Bunk A (2004) AJ (Mg-Al-Sr) alloy system used for new engine block. SAE Technical paper 2004–01–0659. doi: https://doi.org/10.4271/2004-01-0659

  12. Argo D, Forakis P, Lefebvre M (2003) Chemical composition and cleanliness during recycling of the AJ52 magnesium strontium alloy. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals and materials society, Warrendale, pp 33–37

    Google Scholar 

  13. Argo D, Lefebvre M (2003) Melt protection for the AJ52 magnesium Strontium alloy. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals and materials society, Warrendale, pp 15–21

    Google Scholar 

  14. Joslin B (2006) Inside the N52 Engine. In: merks.com. https://www.mwerks.com/artman/publish/features/printer_960.shtml. Accessed 11 June 2020

  15. Xu S et al (2013) Dependence of flow strength and deformation mechanisms in common wrought and die cast magnesium alloys on orientation, strain rate and temperature. J Mag Alloys 1(4):275–282. https://doi.org/10.1016/j.jma.2013.11.003

  16. Weiler JP et al (2006) Variability of skin thickness in an AM60B magnesium alloy die-casting. Mater Sci Eng A 419(1):297–305. https://doi.org/10.1016/j.msea.2006.01.034

  17. Zhou M et al. (2006) Microstructure and mechanical properties of diecast magnesium alloy AM50 with varying section thickness. In: Luo AA, Neelameggham NR, Beals RS (eds) Magnesium technology 2006. The minerals, metals and materials society, Warrendale, pp 121–127

    Google Scholar 

  18. Gertsman VY et al (2005) Microstructure and Second-phase particles in Low- and High-Pressure die-cast magnesium alloy AM50. Metall Mater Trans A 36:1989–1997. https://doi.org/10.1007/s11661-005-0319-5

  19. Han L et al. (2005) Observation of the microstructure and characterization of local mechanical properties of AM50 using a micro-indentation technique. In: Neelameggham NR, Kaplan HI, Powell BR (eds) Magnesium technology 2005. The minerals, metals and materials society, Warrendale, pp 197–202

    Google Scholar 

  20. Coultes BJ (2003) Mechanical property variations in a magnesium high-pressure die-cast component. M.E.Sc. thesis, University of Western Ontario

    Google Scholar 

  21. Weiler JP et al. (2005) Stress-strain response in skin and core regions of die cast magnesium alloy AM60B determined from spherical microindentation. In: Neelameggham NR, Kaplan HI, Powell BR (eds) Magnesium technology 2005. The minerals, metals and materials society, Warrendale, pp 191–196

    Google Scholar 

  22. Koch TA, Gharghouri MA (2003) Fatigue properties of die-cast magnesium alloy AM60B. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals and materials society. Warrendale, pp 71–76

    Google Scholar 

  23. Coultes BJ et al. (2003) Mechanical properties and microstructure of magnesium high pressure die castings. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals and materials society. Warrendale, pp 45–50

    Google Scholar 

  24. Hu H et al (2008) Tensile behavior and fracture characteristics of die cast magnesium alloy AM50. J Mater Pro Tech 201(1–3):364–368. https://doi.org/10.1016/j.jmatprotec.2007.11.275

  25. Weiler JP et al (2005) Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy. Mater Sci Eng A 395(1–2):315–322. https://doi.org/10.1016/j.msea.2004.12.042

  26. Weiler JP et al (2005) The effect of grain size on the flow stress determined from spherical microindentation of die-cast magnesium AM60B alloy. J Mater Sci 40:5999–6005. https://doi.org/10.1007/s10853-005-1295-2

  27. Wang GG, Froese B, Bakke P (2003) Process and Property relationships in AM60B die-castings. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals and materials society, Warrendale, pp 65–69

    Google Scholar 

  28. Weiler JP et al (2006) Tensile fracture characteristics of die cast magnesium alloy AM60B determined from high-resolution X-ray tomography. In: Luo AA, Neelameggham NR, Beals RS (eds) Magnesium technology 2006. The minerals, metals and materials society, Warrendale, pp 405–410

    Google Scholar 

  29. Weiler et al (2007) Damage modeling of die-cast magnesium alloy AM60B. In: Paper presented at the 3rd international conference on light metals technology. Saint-Sauveur, Quebec

    Google Scholar 

  30. Zhang W et al. (2006) Skin and bulk corrosion properties of die cast and thixocast AZ91D Magnesium alloy in 0.05M NaCl solution. Can Metall Quart 45(2):181–188. https://doi.org/10.1179/000844306794408968

  31. Weiler JP, Wood JT (2012) Strain-rate Effects of sand-cast and die-cast magnesium alloys under compressive loading. In: Mathaudhu SN, Sillekens WH, Neelameggham NR, Hort N (eds) Magnesium technology 2012. The minerals, metals and materials society, Warrendale, pp 365–370. https://doi.org/10.1007/978-3-319-48203-3_67

  32. Kang DH et al (2010) Experimental studies on the As-cast microstructure of Mg-Al binary alloys with various solidification rates and compositions. In: Agnew SR, Neelameggham NR, Nyberg EA, Sillekens WH (eds) Magnesium technology 2010. The minerals, metals and materials society, pp 533–536

    Google Scholar 

  33. Berkmortel J et al (2000) Die castability assessment of magnesium alloys for high temperature applications: Part 1 of 2. SAE Technology Paper 2000–01–1119. https://doi.org/10.4271/2000-01-1119

  34. Marchwica PC et al (2012) Combination of cooling curve and microchemical phase analysis of rapidly quenched magnesium AM60B alloy. In: Mathaudhu SN, Sillekens WH, Neelameggham NR, Hort N (eds) Magnesium technology 2012. The minerals, metals and materials society, pp 519–524. https://doi.org/10.1007/978-3-319-48203-3_92

  35. Gesing AJ et al (2013) Cooling curve and microchemical phase analysis of rapidly quenched magnesium AM60B and AE44 alloys. J Achiev Mater Manuf Eng 58(2):59–73

    Google Scholar 

  36. Farrokhnejad M, Berkmortel R (2016) Investigation of the effectiveness of cooling bars used in the die for magnesium high pressure die-casting (HPDC). In: Paper presented at the North American die casting association 2016 die casting congress and tabletop. Columbus, Ohio

    Google Scholar 

  37. Farrokhnejad M, Weiler J (2017) Investigation of the effectiveness of heat pipes used in the die for magnesium high pressure die casting. In: Paper presented at the North American die casting association 2017 die casting congress and tabletop. Atlanta, Georgia

    Google Scholar 

  38. Gheribi AE et al (2012) Identifying optimal conditions for Mg alloy design using thermodynamic and properties databases, the Factsage software and the mesh adaptive direct searches algorithm. In: Paper presented at the 9th international conference on magnesium alloys and their applications. Vancouver, British Columbia

    Google Scholar 

  39. Li JM et al (2008) Thermodynamic modeling of porosity formation during non-equilibrium solidification in magnesium alloy castings. In: Pekguleryuz MO, Neelameggham NR, Beals RS, Nyberg EA (eds) Magnesium technology 2008. The minerals, metals and materials society, pp 105–111

    Google Scholar 

  40. Farrokhnejad M, Straatman AG (2012) Advances on a VOF based numerical simulation of Mg Die-casting process on a general unstructured grid. In: Paper presented at the 9th international conference on magnesium alloys and their applications. Vancouver, British Columbia

    Google Scholar 

  41. Weiler JP et al (2012) Prediction of knit line formations in complex high pressure die cast magnesium alloy components. Int J Cast Metal Res 25(6):379–382. https://doi.org/10.1179/1743133612Y.0000000029

  42. Sharifi P (2015) Process-structure-property correlations for HPDC AM60B. In: Manuel MV, Singh A, Alderman M, Neelameggham NR (eds) Magnesium technology 2015. The minerals, metals and materials society, pp 351–356. https://doi.org/10.1007/978-3-319-48185-2_65

  43. Weiler JP et al (2010) Structure-property relationships for die-cast magnesium alloys. In: Agnew SR, Neelameggham NR, Nyberg EA, Sillekens WH (eds) Magnesium technology 2010. The minerals, metals and materials society, pp 413–318

    Google Scholar 

  44. Weiler JP, Wood JT (2012) Predicting mechanical performance from process parameters in cast magnesium alloys: a review of the UWO research programme. In: Paper presented at the 9th International conference on magnesium alloys and their applications. Vancouver, British Columbia

    Google Scholar 

  45. Sharifi P (2014) Predicting the flow stress of high pressure die cast magnesium alloys. J Alloy Comd 605:237–243. https://doi.org/10.1016/j.jallcom.2014.03.043

  46. Weiler JP, Wood JT (2012) Modeling the tensile failure of cast magnesium alloys. J Alloy Comd 537:133–140. https://doi.org/10.1016/j.jallcom.2012.05.090

  47. Weiler JP, Wood JT (2009) Modeling fracture properties in a die-cast AM60B magnesium alloys I—Analytical failure model. Mat Sci Eng A 527(1–2):25–31. https://doi.org/10.1016/j.msea.2009.08.060

  48. Weiler JP, Wood JT (2009) Modeling fracture properties in a die-cast AM60B magnesium alloy II—The effects of the size and location of porosity determined using finite element simulations. Mat Sci Eng A 527(1–2):32–37. https://doi.org/10.1016/j.msea.2009.08.061

  49. Alternof W et al (2004) Numerical simulation of AM50A magnesium alloy under large deformation. Int J Impact Eng 30(2):117–142. https://doi.org/10.1016/S0734-743X(03)00060-5

  50. Alain R et al (2004) Robustness of large thin wall magnesium die castings for crash applications. SAE Technical Paper 2004–01–0131. https://doi.org/10.4271/2004-01-0131

  51. Weiler JP (2018) Incorporating an ICME approach into die cast magnesium alloy component design. JOM 70:2338–2344. https://doi.org/10.1007/s11837-018-2985-y

  52. USAMP (2011) Magnesium vision 2020: a north american automotive strategic vision for magnesium. USCAR, Detroit, Michigan

    Google Scholar 

  53. Wang GG, Bos J (2018) A study on joining magnesium alloy high pressure die casting components with thread forming fasteners. J Mag Alloy 6(2):114–120. https://doi.org/10.1016/j.jma.2018.04.002

  54. Burns JR, Jekl J, Berkmortel R (2012) Designing for Assembly with thread forming fasteners in magnesium. In: Paper presented at the 9th international conference on magnesium alloys and their applications. Vancouver, British Columbia

    Google Scholar 

  55. Wang GG et al (2001) Corrosion prevention for external magnesium automotive components. SAE Technical Paper 2001–01–0421. https://doi.org/10.4271/2001-01-0421

  56. Weiler JP, Wang G, Berkmortel R (2018) Assessment of cyclic corrosion test protocols for magnesium substrates. SAE Int J Mater Manuf 11(4):481–490. https://doi.org/10.4271/2018-01-0103

  57. Hu Y et al (2012) Effect of some microstructural parameters on the corrosion resistance of magnesium alloys. In: Mathaudhu SN, Sillekens WH, Neelameggham NR, Hort N (eds) Magnesium technology 2012. The minerals, metals and materials society, pp 271–276. https://doi.org/10.1007/978-3-319-48203-3_50

  58. Dehnavi V et al (2018) Growth behavior of low-energy plasma electrolytic oxidation coatings on a magnesium alloy. J Mg Alloy 6(3):229–237. https://doi.org/10.1016/j.jma.2018.05.008

  59. Luo AA (2013) Magnesium casting technology for structural applications. J Mg Alloy 1(1):2–22. https://doi.org/10.1016/j.jma.2013.02.002

  60. Fackler H, Berkmortel R (2016) Design and optimization of magnesium cross car beam for the new mercedes GLC. In: Paper presented at the international magnesium association’s 73rd annual world magnesium conference. Rome, Italy

    Google Scholar 

  61. Berkmortel R et al. (2015) Magnesium applications in the automotive industry and the development trends. In: Paper presented at China Die casting 2015, Shanghai, China

    Google Scholar 

  62. Tippings A et al (2014) Development of a high pressure die cast magnesium cross car beam for automotive ‘platform” application. In: Paper presented at the international magnesium association’s 71st world magnesium conference, Munich, Germany

    Google Scholar 

  63. Tippings A, Lawson T (2005) Design and development of a high pressure die ‘FEC’ (Front End Carrier) for exterior automotive applications. In: Paper presented at the international magnesium association’s 62nd World Magnesium Conference, Berlin, Germany

    Google Scholar 

  64. Adams A et al (2017) Third generation Ford F-150 die-cast magnesium radiator support evolution. In: Paper presented at the international magnesium association’s 74th world magnesium conference, Singapore

    Google Scholar 

  65. Weiler JP et al (2016) Next generation magnesium liftgate—utilizing advanced technologies to maximum ass reduction in a high volume vehicle application. In: Paper presented at the International magnesium association’s 73rd annual world magnesium conference. Rome

    Google Scholar 

  66. Weiler JP (2019) A review of magnesium die-castings for closure applications. J Mag Alloy 7(2):297–304. https://doi.org/10.1016/j.jma.2019.02.005

  67. Simonds G, Wang J (2002) Structural Magnesium Die castings. Developing a robust solution. In: Paper presented at the international magnesium association’s 59th world magnesium conference. Montreal, Quebec

    Google Scholar 

  68. Jackman JA et al (2005) Overview of key R&D activities for the development of high-performance magnesium materials in Canada. Mater Sci Forum 488–489:21–24. https://doi.org/10.4028/scientific.net/MSF.488-489.21

  69. Macaluso G (2016) A look back at 15 years of research and innovation at Auto21. Windsor Star. https://windsorstar.com/business/local-business/a-look-back-at-15-years-of-research-and-innovation-at-auto21/. Accessed 9 June 2020

  70. Automotive Partnerships Canada (2013) Industry drives Canadian research effort to build lighter and greener vehicles. Automotive Partnerships Canada website, https://www.apc-pac.ca/About-Renseignements/Project-Project_eng.asp?ID=19. Accessed 9 June 2020

  71. Jekl J et al (2015) Development of a Thin-Wall Magnesium Side Door Inner Panel for Automobiles. Paper presented at the International Magnesium Association’s 72nd World Magnesium Conference, Vancouver, British Columbia

    Google Scholar 

  72. Luo AA et al (2008) Magnesium front end research and development: a Canada-China-USA Collaboration. In: Pekguleryuz MO, Neelameggham NR, Beals RS, Nyberg EA (eds) Magnesium technology 2008. The minerals, metals & materials society, Warrendale, pp 3–10. https://doi.org/10.1007/978-3-319-48099-2_6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Weiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weiler, J.P. (2021). Contemporary Magnesium Die-Casting Research and Technology: A Canadian Viewpoint. In: Luo, A., et al. Magnesium 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-72432-0_9

Download citation

Publish with us

Policies and ethics