Skip to main content

Ventilative Cooling in Combination with Passive Cooling: Thermal Masses and Phase-Change Materials (PCM)

  • 415 Accesses

Part of the PoliTO Springer Series book series (PTSS)


This chapter first describes the relation between the potential of ventilative cooling to reduce building cooling loads and the role of thermal storage to achieve this; thermal storage could be sensible in the form of exposed thermal mass embedded in the structure of the building or latent in the form of phase change materials embedded in the structure or decoupled from the structure but coupled with the ventilation system. The principles of how thermal storage contributes to passive cooling are described with examples from materialised case-studies. The chapter includes results related to the use of phase change materials in combination with ventilative cooling from an operational system.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72385-9_7
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72385-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 7.1

(Reproduced from [4])

Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10
Fig. 7.11
Fig. 7.12
Fig. 7.13
Fig. 7.14
Fig. 7.15


  1. Wikipedia—Vernacular Architecture. Accessed Jun 2019

  2. Heiselberg P, Kolokotroni M (2017) AIVC VIP 35: Ventilative Cooling. State-of-the-art review executive summary, AIVC

    Google Scholar 

  3. Kolokotroni M, Heiselberg P (2015) IEA EBC Annex 62—Ventilative cooling: state-of-the-art review, Aalborg University, Aalborg. Accessed Nov 2019

  4. Kolokotroni M (1998) Night ventilation for cooling office buildings, BRE Information Paper, IP4/98. CRC, pp 1–4

    Google Scholar 

  5. EPBD recast, 19 May 2010. Accessed May 2019

  6. EN 16798–2019: Energy Performance of Buildings—Ventilation for Buildings. Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics—Module M1–6

    Google Scholar 

  7. Santamouris M, Kolokotsa D (2013) Passive cooling dissipation techniques for buildings and other structures: the state of the art. Energy Build 57:74–94

    CrossRef  Google Scholar 

  8. Mylona Z, Kolokotroni M, Tassou SA (2018) Coupling night ventilative and active cooling to reduce energy use in supermarkets with high refrigeration loads. Energy Build 171:26–37.

    CrossRef  Google Scholar 

  9. Solgi E, Hamedani Z, Fernando R, Skates H, Orji NE (2018) A literature review of night ventilation strategies in buildings. Energy Build 173:337–352

    CrossRef  Google Scholar 

  10. Kolarik J, Yang L (2009) Thermal Mass Activation, Chapter 5 in Expert Guide Part 2: RBE, Aschehoug O and Perino M (Eds), IEA ECBSC Annex 44, Integrating Environmentally Responsive Elements in Buildings

    Google Scholar 

  11. CIBSE Guide A (2015). Environmental Design, section 3.8—Thermal properties of building structures; Linear thermal transmittance, CIBSE

    Google Scholar 

  12. Kolokotroni M (2001) Night ventilation cooling of office buildings: parametric analyses of conceptual energy impacts. ASHRAE Trans 107(Pt1):479–490

    Google Scholar 

  13. Raj VAA, Velraj R (2010) Review on free cooling of buildings using phase change materials. Renew Sustain Energy Rev 14:2819–2829.

    CrossRef  Google Scholar 

  14. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(1):320

    Google Scholar 

  15. Osterman E, Tyagib VV, Stritih U (2010) Review of PCM based cooling technologies for buildings. Energy and Build 49(1):39–71

    Google Scholar 

  16. Zeinelabdein R, Omer S, Gan G (2018) Critical review of latent heat storage systems for free cooling in buildings. Renew Sustain Energy Rev 82:2843–2868.

    CrossRef  Google Scholar 

  17. Santos T, Wines C, Hopper N, Kolokotroni M (2018) Analysis of operational performance of a mechanical ventilative cooling system with active PCM latent thermal storage. Energy Build 159:529–541.

    CrossRef  Google Scholar 

  18. O’Sulllivan P, O’Donovan A (2018) IEA EBC ANNEX 62—Ventilative cooling case studies, Aalborg University, Aalborg. Accessed May 2020

  19. Department of Energy & Climate Change (2013) Gas and electricity prices in the non-domestic sector. Accessed June 2015

  20. CIBSE (2015) Integrated school design TM 57. CIBSE, London, p 2015

    Google Scholar 

  21. Heiselberg P (2018) IEA EBC ANNEX 62—Ventilative cooling design guide, Aalborg University, Aalborg. Accessed May 2020

  22. EN ISO 13786:2017: Thermal performance of building components—Dynamic thermal characteristics—Calculation methods

    Google Scholar 

  23. CIBSE (2015) Guide A: Environmental design, chapter 5: Thermal design, plant sizing and energy consumption, CIBSE

    Google Scholar 

  24. Passive House Institute, Passive House Planning Package (PHPP). Accessed June 2019

  25. IESVE. Accessed June 2019

  26. Mantesi E, Hopfe C J, Cook M J, Glass J (2015), Review of the assessment of thermal mass in whole building performance simulation tools. In: Proceedings of BS2015: 14th conference of international building performance simulation association, Hyderabad, India, 7–9 Dec 2015

    Google Scholar 

  27. Mantesi E, Hopfe CJ, Cook MJ, Glass J, Strachan P (2018) The modelling gap: Quantifying the discrepancy in the representation of thermal mass in building simulation. Build Environ 131:74–98.

    CrossRef  Google Scholar 

  28. BRE, Standard Assessment Procedure (SAP 2012). Accessed June 2019

  29. IEA EBC Annex 62, Ventilative Cooling Potential Tool. Accessed June 2019

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Maria Kolokotroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kolokotroni, M., Santos, T. (2021). Ventilative Cooling in Combination with Passive Cooling: Thermal Masses and Phase-Change Materials (PCM). In: Chiesa, G., Kolokotroni, M., Heiselberg, P. (eds) Innovations in Ventilative Cooling. PoliTO Springer Series. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72384-2

  • Online ISBN: 978-3-030-72385-9

  • eBook Packages: EngineeringEngineering (R0)